Giải bất phương trình sau: \((x^2-2x-3)^2< x^2(x^2-4x-2)+3\left(5x-1\right)\)
*CỨU VỚI*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)
=>16-3x-3<24+2x-2
=>-3x+13<2x+22
=>-5x<9
hay x>-9/5
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
2.a)\(\dfrac{3\text{x}-2}{2}\)=\(\dfrac{1-2\text{x}}{3}\)
<=>\(\dfrac{9\text{x}-6}{6}\)=\(\dfrac{2-4\text{x}}{6}\)
<=>9x-6=2-4x
<=>9x+4x=2+6
<=>13x=8
<=>x=\(\dfrac{8}{13}\)
1.a)2(x-0,5)+3=0,25(4x-1)
<=>2x-1+3=x-1phần4
<=>2x-x=-1/4+1-3
<=>x=-3/4
ta có: x4-4x3-2x2+12x+9 < x4-4x3-2x2+15x-3
=> x4-4x3-2x2+15x-3 - (x4-4x3-2x2+12x+9) > 0
=> 3x+6>0
(đề bài có cho điều kiện của x thì chứng minh 3x+6>0 là xong ạ)
Ta có: \(\left(x^2-2x-3\right)^2< x^2\left(x^2-4x-2\right)+3\left(5x-1\right)\)
\(\Leftrightarrow x^4+4x^2+9-4x^3-6x^2+12x< x^4-4x^3-2x^2+15x-3\)
\(\Leftrightarrow3x-12>0\)
\(\Leftrightarrow x-4>0\Rightarrow x>4\)
Vậy x > 4