K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

9/5 Nhớ cho mjnh nha

1 tháng 4 2017

ko đúng

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Bạn vui lòng viết đề đầy đủ, và gõ bằng công thức toán để được hỗ trợ tốt hơn.

12 tháng 5

đề theo mik nhìn 

25 tháng 4 2017

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Leftrightarrow x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)

\(\Leftrightarrow\left(x^2y^2-x^2\right)+\left(2y^2-2\right)=0\)

\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(y-1\right)\left(y+1\right)=0\)

Dễ thấy: \(x^2+2\ge2>0\forall x\) (vô nghiệm)

\(\Rightarrow\left[{}\begin{matrix}y-1=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

4 tháng 5

đúng lúc mình đang cần cảm ơn anh zai

 

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$

$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$

$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$

Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(x-y)^2=(xy-4)^2=y^2=0$

$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)

Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.

4 tháng 4 2022

\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

AD t/c của dãy tỉ số bằng nhâu ta có

\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)

\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)

4 tháng 4 2022

lần đầu thấy tự làm nha:))