cho a/b =b/c =c/a và a+b+c # 0.tính a3b2c1930/a1935.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................
1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath
1)
Ta có :
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)
\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)
\(\Leftrightarrow2ab=ac+bc\) (1)
Lại có :
\(\frac{a}{b}=\frac{a-c}{c-b}\)
\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Leftrightarrow ac-ab=ab-bc\)
\(\Leftrightarrow2ab=ac+bc\) (2)
Từ (1) và (2) :
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
\(A=\left(a-b\right)-\left(c-a\right)+\left(-a+b+c\right)\)
\(A=a-b-c+a-a+b+c=a\left(1\right)\)
\(B=-\left(b-c\right)+\left(b-c+a\right)\)
\(B=-b+c+b-c+a=a\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A=B=a\)
Vì a/b=b/c=c/a => a=b=c => a3b2c1930=a3a2a1930= a1935.Vậy a3b2c1930/a1935=a1935/a1935=1
ADTCDTSBN ta có a+b+c/b+c+a=1
=>a/b=1=>a=b
b/c=1=>b=c
=>a=b=c
ta có M=b^3.b^2.b^1930/b^1935=1