Cho hình chữ nhật ABCD, AB= 2AD. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM= Cp. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N. Chứng imnh tứ giác MNPQ là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MQ song song với NP
Nên góc PNQ=góc MQN
ABCD là hình chữ nhật nên AB song song vs CD
suy ra góc DAC=góc ACB
Cminh tam giác MAQ đồng dạng vs tam giác PCN (TH g.g)
suy ra AM/CP=MQ/PN (các cạnh tương ứng tỉ lệ)
Do AM=CP nên MQ=PN
Bạn tự cminh nốt nha ^_^
Link Hình : http://imagizer.imageshack.us/a/img922/7473/YAp5zD.png
a) Gọi E là trung điểm BK
Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)
Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành
Chứng minh AE//NP//MQ (3)
Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác
=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ
=> BQ _|_ NP
b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G
Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\))
=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)
Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)
=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)
Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)
Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)
\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
mình làm được phần a thôi, vậy có được không?