K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a) Ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)

\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=5x\left(3x-1\right)+7\left(3x-1\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)

\(\Leftrightarrow15x^2-15x^2+3x+10x+5x-21x=-7-2\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\)

Vậy x = 3

b) Ta có: \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)

                            \(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=2x\left(0,5x+2\right)+\left(0,5x+2\right)\)

                             \(\Leftrightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)

                              \(\Leftrightarrow x^2-x^2+3x+x-4x-0,5x=2-3\)

                             \(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\)

Vậy x = 2

2 tháng 7 2018

bài này sử dụng tích chéo nha bạn

15 tháng 6 2018

a/ đk: x khác -7/5 ; x khác -1/5

pt <=> \(\dfrac{\left(3x+2\right)\left(5x+1\right)}{\left(5x+7\right)\left(5x+1\right)}=\dfrac{\left(3x-1\right)\left(5x+7\right)}{\left(5x+7\right)\left(5x+1\right)}\)

\(\Rightarrow15x^2+13x+2=15x^2+16x-7\)

\(\Leftrightarrow15x^2+13x-15x^2-16x^2=-7-2\)

\(\Leftrightarrow-3x=-9\Leftrightarrow x=3\left(tm\right)\)

vậy x = 3

b/ đk: x khác -1/2; x khác -3

pt <=> \(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(2x+1\right)\left(x+3\right)}=\dfrac{\left(0,5x+2\right)\left(2x+1\right)}{\left(2x+1\right)\left(x+3\right)}\)

\(\Rightarrow x^2+4x+3=x^2+4,5x+2\)

\(\Leftrightarrow x^2+4x-x^2-4,5x=2-3\)

\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\left(tm\right)\)

vậy x = 2

15 tháng 6 2018

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}=\dfrac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\Rightarrow2\left(3x+2\right)=5x+7\)

\(\Rightarrow6x+4=5x+7\)

\(\Leftrightarrow x=3\)

Vậy x = 3

b) Ta có: \(\dfrac{0,5x+2}{x+3}=\dfrac{2\left(0,5x+2\right)}{2\left(x+3\right)}=\dfrac{x+4}{2x+6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+1}{2x+1}=\dfrac{0,5x+2}{x+3}=\dfrac{x+4}{2x+6}=\dfrac{\left(x+4\right)-\left(x+1\right)}{\left(2x+6\right)-\left(2x+1\right)}=\dfrac{3}{5}\)

\(\Rightarrow5\left(x+1\right)=3\left(2x+1\right)\)

\(\Rightarrow5x+5=6x+3\)

\(\Leftrightarrow x=2\)

2 tháng 7 2021

1)  (2x + 1)(3x – 2) = (5x – 8)(2x + 1)

⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0

⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0

⇔ (2x + 1).(3x – 2 – 5x + 8) = 0

⇔ (2x + 1)(6 – 2x) = 0

\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)

Vậy.....

2)  4x2 -1 = (2x + 1)(3x - 5)

⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0

⇔ (2x+1)(2x-1-3x+5)=0

⇔ (2x+1)(4-x)=0

⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)

Vậy...

3)  

(x + 1)2 = 4(x2 – 2x + 1)

⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0

⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0

⇔ - 3x2 + 10x – 3 = 0

⇔ (- 3x2 + 9x) + (x – 3) = 0

⇔ -3x (x – 3)+ ( x- 3) = 0

⇔ ( x- 3) ( - 3x + 1) = 0

\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy......

2 tháng 7 2021

4) 2x3+5x2-3x=0

⇒2x3-x2+6x2-3x=0

⇒(2x3-x2)+(6x2-3x)=0

⇒x2(2x-1)+3x(2x-1)=0

⇒(x2+3x)(2x-1)=0

⇒ hoặc x2+3x=0⇒x(x+3)=0⇒hoặc x=0 hoặc x=-3

hoặc 2x-1=0⇒x=0,5

Vậy ...

5)2x=3x-2

⇒2x-3x=-2

⇒-x=-2

⇒x=2

6) x+15=3x-1

⇒x-3x=-1-15

⇒-2x=-16

⇒x=8

7)2-x=0,5x-4

⇒-x-0,5x=-4-2

⇒-1,5x=-6

⇒x=4

16 tháng 7 2017

\(\dfrac{3x+2}{5x-7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x-7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2-21x-5x-7\)

\(\Leftrightarrow15x^2+13x+2=15x^2-26x-7\)

\(\Leftrightarrow15x^2-15x^2-13x-2=26x-7\)

\(\Leftrightarrow-13x-2=26x-7\)

\(\Leftrightarrow26x+13x=7+2\)

\(\Leftrightarrow39x=9\Leftrightarrow x=\dfrac{3}{13}\)

b tương tự

1)\(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow2\left(2x-5\right)\left(24+5x\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}2x-5=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{5}{2};\frac{-24}{5}\right\}\)

2) \(0,5x\left(x-3\right)=\left(x-3\right)\left(2,5x-4\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(2,5x-4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[0,5x-\left(2,5x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-2,5x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-2x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-2x\right)=0\)

\(\Leftrightarrow\left(x-3\right)\cdot2\cdot\left(2-x\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x-3=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy: x∈{2;3}

3) \(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-\left(2x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left[2x-1-\left(3x-5\right)\right]=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-1}{2};4\right\}\)

4) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(x+11\right)+\left(2-3x\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(x+11+2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(13-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\13-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\4x=13\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{13}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{2}{3};\frac{13}{4}\right\}\)

b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-17x+20

=>-12x-2=-17x+20

=>5x=22

=>x=22/5

c: =>24x^2+16x-9x-6-4x^2-16x-7x-28=20x^2-4x+5x-1

=>-16x-34=x-1

=>-17x=33

=>x=-33/17

d: =>2x^2+3x^2-3=5x^2+5x

=>5x=-3

=>x=-3/5

e: =>8x+16-5x^2-10x+4x^2-4x-8=4-x^2

=>-6x+8=4

=>-6x=-4

=>x=2/3

f: =>4(x^2+4x-5)-x^2-7x-10=3x^2+3x-6

=>4x^2+16x-20-4x^2-10x+4=0

=>6x=16

=>x=8/3

21 tháng 1 2018

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)

\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)

\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)

\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)

\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)

\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-3\right\}\)

\(h,2x\left(x-1\right)=x^2-1\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy nghiệm của pt là \(S=\left\{1\right\}\)

1: \(\Leftrightarrow\left(x+1\right)^2=4\)

=>x+1=2 hoặc x+1=-2

=>x=1 hoặc x=-3

2: \(\Leftrightarrow7x-21=5x+25\)

=>2x=46

=>x=23

3: \(\Leftrightarrow x^2+4x+3=x^2+0.5x+4x+2\)

=>4,5x+2=4x+3

=>x=1