K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

c: ΔABM=ΔACM

=>góc AMB=góc AMC=180/2=90 độ

=>AM vuông góc BC

d: ΔABM=ΔACM

=>BM=CM

=>Mlà trung điểm của BC

a: Xét ΔABM và ΔANM có

AB=AN

\(\widehat{BAM}=\widehat{NAM}\)

AM chung

Do đó: ΔABM=ΔANM

b: Xét ΔBMI và ΔNMC có 

\(\widehat{BMI}=\widehat{NMC}\)

MB=MN

\(\widehat{MBI}=\widehat{MNC}\)

Do đó; ΔBMI=ΔNMC

Suy ra: BI=NC

Ta có: AB+BI=AI

AN+NC=AC

mà AB=AN

và BI=NC

nên AI=AC

hay ΔAIC cân tại A

c: Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

mà AB<AC

nên BM<CM

3 tháng 12 2021

Xét Δ ABM và Δ ACM có:

AB = AC (gt)

AM là cạnh chung

Góc BAM = góc CAM (AM là tia phân giác góc BAC)

⇒ Δ ABM = Δ ACM (c_g_c)

12 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của \(\widehat{BAC}\)

b: Xét ΔCBD có CB=CD

nên ΔCBD cân tại C

Ta có: ΔCBD cân tại C

mà CN là đường phân giác

nên CN\(\perp\)BD

12 tháng 12 2023

cảm ơn bạn !

23 tháng 12 2023

em lớp 6 ko bt làm

 

23 tháng 12 2023

em lớp 5 cũng ko biết làm

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

31 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMAB vuông tại M và ΔMDC vuông tại M có

MB=MC

\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, AB//CD)

Do đó: ΔMAB=ΔMDC

Ta có: \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

\(\widehat{ABC}=\widehat{DCB}\)(hai góc so le trong, AB//CD)

Do đó: \(\widehat{ACB}=\widehat{DCB}\)

=>CB là phân giác của góc ACD

 

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM