Tính giá trị của biểu thức:
A=2\30+2\42+2\56+2\72+2\90+2\110+2\132
Giúp mk với mk cần 10 phút để làm bài toán này thôi . Nhớ giúp mk với nka các bạn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/2×2/3×3/4×....×49/50
=(1×2×3×4×...×49)/(2×3×4×...×50)
=1/50
Chắc chắn đúng
Ta có : \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-.....-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+.....+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{1}{90}-\frac{80}{90}=\frac{-79}{90}\)
Đặt \(A=\left(...\right)\) ( tự ghi )
Ta có :
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(-A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}-\frac{1}{9.10}\)
\(-A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(-\frac{1}{9}+\frac{1}{10}\)
\(-A=1-\frac{1}{9}-\frac{1}{9}+\frac{1}{10}\)
\(-A=\frac{79}{90}\)
\(A=\frac{-79}{90}\)
Chúc bạn học tốt ~
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
1, Ta có: \(A=3x^2+8x+9=3\left(x^2+\frac{8}{3}x+3\right)=3\left(x^2+\frac{8}{3}x+\frac{16}{9}+\frac{11}{9}\right)\)
\(=3\left(x+\frac{4}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\forall x\)
=> Min A = 11/3 tại x = -4/3
2, Ta có: \(A=-2x^2+6x+3=-2\left(x^2-3x-\frac{3}{2}\right)=-2\left(x^2-3x+\frac{9}{4}-\frac{15}{4}\right)\)
\(=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\forall x\)
=> Max A = 15/2 tại x = 3/2
=.= hk tốt!!
mình biến đởi phần trong |......| rồi bạn thay vào nha
1/30 + 1/42 + 1/56 + 1/72 +1/ 90 + 1/110 + 1/132
=1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 +1/ 10.11
=1/5 -1/6 +1/6 - 1/7 +......+1/10 - 1/11
=1/5 - 1/11=11/55 - 5/55 =6/ 55
thay vào |....|=> |6/55 - x | = 2/3 => mở ra 2 trường hợp mà tính nha
chúc hok tốt
=>(1/5.6+1/6.7+1/7.8+1/9.10+1/10.11+1/11.12)-x=2/3
=>(1/5-1/+1/6-1/7+...+1/11-1/12)-x=2/3
=>(1/5-1/12)-x=2/3
=>7/60-x=2/3
=>x=7/60-2/3
=>x=-11/20
1.\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{23}-\frac{4}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
2. Đặt \(A=\frac{3}{14}+\frac{3}{84}+\frac{3}{204}+\frac{3}{374}+\frac{3}{594}+\frac{3}{864}\)
\(\Rightarrow A=\frac{3}{2.7}+\frac{3}{7.12}+...+\frac{3}{27.32}\)
\(\Rightarrow5A=3.\left(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{27.32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{27}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\frac{15}{32}=\frac{45}{32}\Rightarrow A=\frac{45}{32}:5=\frac{9}{32}\)
3. Đặt \(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\)
\(\Rightarrow3S=\frac{3}{10}+\frac{3}{40}+...+\frac{3}{340}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\Rightarrow S=\frac{9}{20}:3=\frac{3}{20}\)
Câu 1:
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
\(-A=\left(\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(-A=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+\frac{1}{8}-\frac{1}{7}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)
\(-A=\frac{1}{10}-1=\frac{-9}{10}\Rightarrow A=\frac{9}{10}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{8.9}+\frac{1}{7.8}+\frac{1}{6.7}+\frac{1}{5.6}+\frac{1}{4.5}+\frac{1}{3.4}+\frac{1}{2.3}+\frac{1}{1.2}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
Vậy A=-79/90
y x2+ y/2=10
=>yx2 + yx1/2 =10
=>yx (2+1/2)=10
=>y x 5/2=10
=>y=10 :5/2
=>y= 10x2/5
=>y=4
Trả lời: y=4
Mọi người tk mình đi mình đang bị âm nè!!!!!!Ai tk mình mình tk lại nha !!!
A=(1/30+1/42+1/56+1/72+1/90+1/110+1/132).2
= (1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12).2
=(1/5-1/12).2
=7/60.2
=14/60=7/30