Cho A=m+3/m-2 .Với giá trị nào m thuộc Z nào thì A tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì \(2m+3⋮m+1\)
\(\Leftrightarrow2m+2+1⋮m+1\)
\(\Leftrightarrow m+1\in\left\{1;-1\right\}\)
hay \(m\in\left\{0;-2\right\}\)
b: Gọi a=UCLN(2m+3;m+1)
\(\Leftrightarrow2m+3-2m-2⋮a\)
\(\Leftrightarrow1⋮a\)
=>UCLN(2m+3;m+1)=1
=>A là phân số tối giản
a)Do m ∈ Z => 2m+3, m+1 ∈ Z
Để 2m+3/m+1 ∈ Z => 2m+3 ⋮ m+1
Mà m+1 ⋮ m+1 => 2(m+1) ⋮ m+1 => 2m+2 ⋮ m+1
=> (2m+3)-(2m+2) ⋮ m+1 => 1 ⋮ m+1
Do m+1 ∈ Z => m+1 ∈ {1; -1}
Nếu m + 1 = 1 => m = 0 (t/m)
m+1 = -1 => m = -2 (t/m)
Vậy m ∈ {0; -2}
b) Gọi ƯCLN(2m+3, m+1) = d (d ∈ N*)
=> 2m+3
m+1 ⋮ d => 2(m+1) ⋮ d => 2m+2 ⋮ d
=> (2m+3) - (2m+2) ⋮ d
=> 1 ⋮ d
Mà d∈ N* => d =1
Vậy phân số B tối giản (đpcm)
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}\)
\(=\frac{m+2}{m+2}-\frac{5}{m+2}\)
\(=1-\frac{5}{m+2}\)
Để y dương thì :
\(1-\frac{5}{m+2}>0\)
\(\Leftrightarrow\frac{5}{m+2}< 1\)
TH1 :
\(m+2< 0\Rightarrow\frac{5}{m+2}< 0< 1\)
\(\Rightarrow m< -2\)
TH2
\(m+2>0:y>0\Leftrightarrow\frac{5}{m+2}< 1\)
\(\Leftrightarrow m+2>5\)
\(\Leftrightarrow m>3\)
Vậy ...
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}=1-\frac{5}{m+2}\)
\(\text{Để y là số âm }\)
\(\Rightarrow\frac{5}{m+2}\text{ là số dương}\)
\(\Rightarrow m+2\text{ là số dương}\)
\(\Rightarrow m+2>0\text{ }\)
\(\Rightarrow m>-2\)
ta có: \(y=\frac{m+3}{m+2}=\frac{m+2+1}{m+2}=1+\frac{1}{m+2}\)
Để y là số dương
=> 1/m+2 là số dương
=> m +2 là số dương
\(\Rightarrow m+2>0\)
=> m > - 2
( số dương: VD: 1/2;2/3;...)
a. Có rồi .
b. Để q tối giản thì:(a + 3, a - 2) = 1
Gọi d là ưc nguyên tố của a + 3 và a - 2
=> a + 3 - a + 2 chia hết cho d
=> 5 chia hết cho d
=> mà d nguyên tố => d = 5
=> Tìm a để a + 3 chia hết cho 5; a - 2 chia hết cho 5
Vì a + 3 = a - 2 + 5 nên a - 2 chia hết cho 5 thì a + 3 chia hết cho 5
=> a - 2 = 3k (k thuộc N) => a = 3k + 2
Vậy với a khác 3k + 2 thì q tối giản.
a, q nguyên <=>a+3 chia het cho a-2
=>a-2+5 chia het cho a-2
Mà a-2 chia het cho a-2
=>5 chia het cho a-2
=>a-2 E U(5)={-5;-1;1;5}
=>a E {-3;1;3;7}