a)có tồn tại hay ko hai số dương a,b khác nhau sao cho: 1/a - 1/b = 1/a-b
b) chứng minh không tồn tại hai số hữu tỉ x,y trái dấu không đối nhau thảo mãn 1/x+y = 1/x + 1/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dùng phương pháp phản chứng :
giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )
Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài
Giả sử tồn tại x,y trái dấu thỏa mãn
Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)
=> (x+y)2=xy
Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0
Còn xy nhỏ hơn 0 vì x,y trái dấu
Vậy ko có x,y trái dấu thỏa mãn đề bài
1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương
ta dùng pháp phản chứng
giả sử tồn tại 2 số hữu tỉ x và y trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy
điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)
vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
a . theo đề bài :
a + b = a .b = a : b
a . b = a : b => a .b .b = a => b^2 = a : a = > b = 1 hoặc b -1
Với b = 1 thì a . 1 = a + 1 = > a = a + 1 ( loại )
Với b = -1 thì a . -1 = a + -1 => -a = a + -1 => -2a = -1 => a = 1/2
b ,c tương tự nhe
a, không tồn tại chắc vậy
a thì chắc không tồn tại rồi
Còn b thì không biết