chứng minh 0,3 ( 20032003-19971997) là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.
Vậy\(\sqrt{a}\) là số vô tỉ.
- Nếu n là số chẵn thì n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.
- Nếu n là số lẻ thì n + 2017 là số chẵn => n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.
Vậy n.(n + 2017) là số chẵn với mọi số tự nhiên n.
Xét 2 trường hợp:
Nếu n lẻ thì n + 2017 sẽ là một số chẵn
Mà lẻ nhân chẵn sẽ cho 1 số chẵn nên n.(n+2017) chẵn
Nếu n chẵn thì n + 2017 sẽ là một số lẻ
Mà chẵn nhân lẻ sẽ cho 2 số chẵn nên n.(n + 2017 ) chẵn
Vậy với mọi số tự nhiên n thì n.(n+2017) chẵn
Nhớ k cho mình nhé! Thank you!!!
Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương
Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)
Theo đề bài, ta có :
\(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)
\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)
\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )
Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương
Gọi d = ƯCLN ( 5n+6 ; n+1 )
=> \(5n+6⋮d;n+1⋮d\)
=> \(5n+6⋮d;5.\left(n+1\right)⋮d\)
=> \(5n+6⋮d;5n+5⋮d\)
=> \(\left(5n+6\right)-\left(5n+5\right)⋮d\)
=> \(5n+6-5n-5⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> ƯCLN ( 5n+6 ; n+1 ) = 1
=> 5n+6 và n+1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n ( đpcm )
Vậy bài toán được chứng minh !
Cbht ❤️
Đặt ƯCLN(5n+6,n+1)=d
Ta có: \(n+1⋮d\Rightarrow5\left(n+1\right)⋮d\)\(\Rightarrow5n+5⋮d\)
mà: \(5n+6⋮d\)
\(\Rightarrow\left(5n+6\right)-\left(5n+5\right)⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d\in\)Ư(1)
Mà d lớn nhất=> d=1 =>ƯCLN(n+1,5n+6)=1
=>. n+1 và 5n+6 là 2 số nguyên tố cùng nhau\(\forall n\in Z\)
`= 0,3 . (2003^2000 . 2003^3 - 1997^1996 .1997)`
`=0,3 . (...1 xx ...7 - ...1 xx ...7)`
`= 0,3 . (...7 - ...7)`
`= 0,3 xx ...0`
`= 0`