Cho tam giác ABC , vuông cân tại A . D là một điểm bất kì trên BC . Vẽ hai tia Bx và Cy cung vuông góc với BC và nằm cùng một nửa mặt phẳng chứa điểm A bờ là đường thẳng BC . Qua A vẽ một đường thẳng vuông góc với AD cắt Bx và Cy theo thứ tự M và N . Chứng minh
a, AM = AD
b, A là trung điểm MN
c, BC=BM + CN
d, Tam giác DMN vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :
a) 2 tam giác : AMB=ADC
b) A là trung điểm của MN.
a.Ta có : ΔABC vuông cân tại A (gt)
Mà MB⊥BC,NC⊥BC
→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)
Lại có : AD⊥MN,AB⊥AC
→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)
→ˆMAB=ˆDAC
Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)
→AM=AD,BM=DC
b.Tương tự câu a ta chứng minh được AN=AD,CN=BD
→AM=AN→A là trung điểm MN
c.Từ a,b →BC=BD+DC=CN+BM
d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A
Tương tự ΔAND vuông cân tại A
→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D
a) Có \(\Delta\)ABC vuông cân tại A (gt)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
Mà Bx _|_ BC (gt) => \(\widehat{ABM}=45^o\)
Xét tam giác ADC và tam giác ABM có:
\(\widehat{ABM}=\widehat{ACD}=45^o\)
AB=AC (gt)
\(\widehat{MAB}=\widehat{DAC}\)(cùng phụ \(\widehat{BAD}\))
\(\Rightarrow\Delta ADC=\Delta ABM\left(gcg\right)\)
=> AM=AD (2 cạnh tương ứng) (đpcm)
Nguồn: ĀØ