K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Ta có (a+b)>=0 => a+ 2ab + b>= 0 => a2 + b>= 2ab. (1)

         (b+c)>=0 => b+ 2bc + c>= 0 => b2 + c>= 2bc. (2)

         (c+a)>=0 => c+ 2ca + a>= 0 => c2 + a>= 2ca. (3)

Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)

suy ra a2 + b2 + c2>=ab+bc+ca (*)

Áp dụng bất đẳng thức trong tam giác ta có:

a+b>c => ac+bc>c2. (4)

b+c>a => ab+ac>a2. (5)

c+a>b => bc+ab>b2. (6)

Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)

Từ (*) và (**) suy ra đpcm.

12 tháng 12 2016

xfffff

NV
22 tháng 12 2020

\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)

\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân

26 tháng 3 2020

Ta có:

a<b+ca<b+c 
--> a+a<a+b+ca+a<a+b+c 
--> 2a<22a<2 
--> a<1a<1 

Tương tự ta có : b<1,c<1b<1,c<1 

Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0 
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0 
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0 
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc 

Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca 
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2 
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm