K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

Ta có:\frac{2017.2018-1}{2017.2018} =1-\frac{1}{2017.2018}

         \frac{2018.2019-1}{2018.2019}=1- \frac{1}{2018.2019}

vì 2017.2018>2018.2019

=> \frac{1}{2017.2018}  > \frac{1}{2018.2019}

=> 1- \frac{1}{2017.2018} > \frac{1}{2018.2019}

=> A>B

10 tháng 4 2018

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

10 tháng 4 2018

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

12 tháng 4 2018

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

12 tháng 4 2018

Ta có : 

\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế ) 

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

Mình thấy là A<B.

Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019

Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B

=> A<B

27 tháng 2 2019

Ta có: 20182019 - 20182017 = 20182017(20182 - 1)

20182017 - 20182015 = 20182015(20182 - 1)

Vì 20182017(20182 - 1) > 20182015(20182 - 1)

=>  20182019 - 20182017 > 20182017 - 20182015

Vậy 20182019 - 20182017 > 20182017 - 20182015

8 tháng 6 2019

#)Giải :

\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)

\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)

\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)

\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)

Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)

6 tháng 4 2023

`a,`

`5/6=1-1/6`

`7/8=1-1/8`

Mà `1/6>1/8 -> 5/6<7/8`

`b,`

`9/5=(9 \times 2)/(5 \times 2)=18/10`

`3/2=(3 \times 5)/(2 \times 5)=15/10`

`18/10 > 15/10 -> 9/5 > 3/2`

`c,`

`2017/2018 = 1-1/2018`

`2019/2020=1-1/2020`

`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`

`d,`

`2018/2017 = 1+1/2017`

`2020/2019 = 1+1/2019`

`1/2017 > 1/2019 -> 2018/2017>2020/2019`

7 tháng 8 2017

Bằng nhau nha