cho (6x+7y).(7x+6y) chia hết cho 13 . cmr: tích trên có ít nhất một ước là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11 là số nguyên tố, (16a+17b)(17a+16b) chia hết cho 11 => có ít nhất một thừa số chia hết cho 11, không giãm tính tính tổng quát, giả sử (16a+17b) chia hết cho 11
ta cm (17a+16b) cũng chia hết cho 11, thật vậy:
16a + 17b chia hết cho 11 => 2(16a + 17b) chia hết cho 11
=> 33(a+b) + b -a chia hết cho 11 => b-a chia hết cho 11
=> a-b chia hết cho 11
Ta có: 2(17a+16b) = 33(a+b) + a-b chia hết cho 11
do 2 và 11 là hai số nguyên tố => 17a+16b chia hết cho 11
Vậy (16a+17b)(17a+16b) chia hết cho 11.11 = 121 = 11^2 là scp => đpcm
Đề cho là (16a+17b) + (16b+17a) chia hết cho 11 chứ đâu phải là (16a+17b) . (16b+17a) chia hết cho 11
Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)
\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)
P chia hết cho 11 thì
- Hoặc thừa số thứ nhất \(\left[11\left(2a+b\right)-6\left(a-b\right)\right]\) chia hết cho 11 => (a - b) chia hết cho 11 => Thừa số thứ 2: \(\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)cũng chia hết cho 11. Do đó P chia hết cho 112.
- Và ngược lại, Thừa số thứ 2 chia hết cho 11 ta cũng suy được thừa số thứ 1 cũng chia hết cho 11 và P cũng chia hết cho 112.
Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM
a)n là số chính phương vì n có số ước lẻ
b)n chia hết cho 4 vì n chia hết cho 2(n có ước chẵn)
c)mình ko bt
#)Giải :
Ta có : \(6x+11y⋮31\)
\(\Rightarrow6x+11y+31y⋮31\)
\(\Rightarrow6x+42y⋮31\)
\(\Rightarrow6\left(x+7y\right)⋮31\)
Mà (6;31) = 1 \(\Rightarrow\)y + 7y chia hết cho 31 (đpcm)
Ngược lại thì tương tự thui bạn, và điểu này thì vẫn đúng nhé !
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)