Cho tam giác ABC, có AB = 6 cm. Trên AC lấy điểm D sao cho AD gấp đôi DC. Trên BC lấy điểm E sao cho BE = \(\dfrac{1}{2}\) EC, kéo dài DE và AB cắt nhau ở G. Tính BG?
Nhanh cho mình với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối AE, CG ta có:
- = x 2 (vì cùng đường cao hạ từ G xuống AC và đáy AD = CD x 2).
- Mà = x 2 (cùng đườ
Ta có : DC/CA = CM/CB = DM/AB = 1/3 (vì AD = 2DC ; BE = 1/2 EC)(*).
(*)=> DM = AB/3 = 6/3 = 2 (cm)
(*)=> góc CDM = góc CAB ( định lý ta-lét đảo )
<=> CDM + góc C = góc CAB + góc C
<=> góc DME = góc EBG (1)
ME =EB (=CB/3) (2)
góc DEM = góc BEG ( đối đỉnh ) (3)
Từ 1,2,3 => tam giác EDM = tam giác EGB (g.c.g)
Nên : BG = DM = 2 (cm)
Từ E kẻ đt // cắt DN ở H
Từ B kẻ đt // cắt DN ở K
+ Có: DN//=1/2 ME (DN là đường trung bình tg CME)
MD// EH (theo ta kẻ)
=> MDHE là hbh
=> ME=DH
mà DN=1/2ME
=> NH=ND
+ Xét tg NBK:
E là trung điểm BN
EH//BK (cùng //AC theo tc hbh và ta kẻ)
=> EH là đường trung bình tg NBK
=> KH=HN
=> KH=HN=ND=1/3 AB=2cm
+ Lại có:
AD//BK (ta kẻ)
AD=2 MD (M là tđiểm AD)
BK=2 EH (tc đường tb tg)
=> AD//=BK
=> ADKB là hbh
=> DK//AB
=> GBE= góc DNE (so le trong) (3)
Từ (1), (2), (3)=> tg BEG=tg NED (gcg)
=> BG=DN=2 cm (đpcm).
Ta có : DC/CA = CM/CB = DM/AB = 1/3 (vì AD = 2DC ; BE = 1/2 EC)(*).
(*)=> DM = AB/3 = 6/3 = 2 (cm)
(*)=> góc CDM = góc CAB ( định lý ta-lét đảo )
<=> CDM + góc C = góc CAB + góc C
<=> góc DME = góc EBG (1)
ME =EB (=CB/3) (2)
góc DEM = góc BEG ( đối đỉnh ) (3)
Từ 1,2,3 => tam giác EDM = tam giác EGB (g.c.g)
Nên : BG = DM = 2 (cm)
tk cho mk nha $_$