Cho A,B,C là độ dài 3 cạnh của một tam giác.CMR :
AB+AC+BC\(\le A^2+B^2+C^2\) <2(AB+BC+CA)
<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk còn thiếu vế trái nữa
a2 + b2 + c2 \(\le\)2 ( ab + bc + ca )
Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác:
Ta có:
a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac ( 1 )
b \(\le\) a + c => b . b \(\le\)b ( a + c ) => b2 \(\le\)ab + bc ( 2)
c \(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac + bc ( 3 )
Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được:
a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc
Vậy a2 + b2 + c2 \(\le\)2.( ab + bc + ca )
a2 + b2 + c2 \(\ge\) ab + bc + ca
<=> a2 + b2 + c2 - ab - bc - ca \(\ge\) 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge\)0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) \(\ge\)0
<=> ( a - b )2 + ( b - c)2 + ( c - a)2 \(\ge\) 0 ( Luôn đúng)
Dấu " = " xảy ra khi a = b = c
Ta có :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) (1)
Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :
\(a^2< a.\left(b+c\right)\)
\(\Rightarrow a^2< ab+ac\)
Tương tự :
\(b^2< ab+bc\)
\(c^2< ca+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (2)
Từ (1) và (2)
=> Đpcm
Ta có : \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ac\right)\le2\left(a^2+b^2+c^2\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Vì BĐT cuối luôn đúng nên ta có : \(a^2+b^2+c^2\ge ab+bc+ac\)
Theo Bất đẳng thức tam giác ta có :
\(a< b+c\Rightarrow a.a< a\left(b+c\right)\Leftrightarrow a^2< ab+ac\) (1)
\(b< a+c\Rightarrow b.b< b\left(a+c\right)\Leftrightarrow b^2< ab+bc\)(2)
\(c< a+b\Rightarrow c.c< c\left(a+b\right)\Leftrightarrow c^2< ac+bc\)(3)
Cộng (1) , (2) , (3) theo vế ta được : \(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
Từ đó suy ra đpcm
ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca
<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0
<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0
<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0
<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)
dấu = xảy ra khi a =b=c
a−b<c<=>a2+b2−2ab<c2a−b<c<=>a2+b2−2ab<c2
b−c<a<=>b2+c2−2bc<a2b−c<a<=>b2+c2−2bc<a2
a−c<b<=>a2+c2−2ac<b2a−c<b<=>a2+c2−2ac<b2
Cộng các vế ta có
2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c22(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)
Áp dụng BĐT Cô-si, ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
\(\Rightarrow ab+bc+ca\le a^2+b^2+c^2\);\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Có: \(a^2+b^2+c^2< 2\left(a^2+b^2+c^2\right)\)(a,b,c>0)
Vậy ta có đpcm.
Câu 4:
Theo BĐT tam giác ta có:
$a< b+c$
$=> a^2< ab+ac$
$b< c+a$
$=> b^2 <bc+ba$
$c<a+b$
$=> c^2 <ca+cb$
Cộng vế với vế 3 BĐT trên ta được:
$a^2+b^2+c^2 < 2(ab+bc+ca) (1)$
Ta có $(a-b)^2+(b-c)^2+(c-a)^2 ≥ 0$ với mọi a,b,c là độ dài 3 cạnh của tam giác
$<=> a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2 ≥ 0$
$<=> 2(a^2+b^2+c^2) ≥ 2(ab+bc+ca)$
$<=> ab+bc+ca ≤ a^2+b^2+c^2 (2)$
Dấu = xảy ra khi $a=b=c$ <=> tam giác đó đều
(1),(2) => đpcm
Ta có (a+b)2 >=0 => a2 + 2ab + b2 >= 0 => a2 + b2 >= 2ab. (1)
(b+c)2 >=0 => b2 + 2bc + c2 >= 0 => b2 + c2 >= 2bc. (2)
(c+a)2 >=0 => c2 + 2ca + a2 >= 0 => c2 + a2 >= 2ca. (3)
Cộng (1), (2), (3), theo vế ta có 2(a2 + b2 + c2)>=2(ab+bc+ca)
suy ra a2 + b2 + c2>=ab+bc+ca (*)
Áp dụng bất đẳng thức trong tam giác ta có:
a+b>c => ac+bc>c2. (4)
b+c>a => ab+ac>a2. (5)
c+a>b => bc+ab>b2. (6)
Cộng (4), (5), (6) theo vế ta có 2(ab+bc+ca)>a2+b2+c2(**)
Từ (*) và (**) suy ra đpcm.