K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

x=1

y=1

z=0

8 tháng 3 2017

Là bằng 0

20 tháng 9 2019

a. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

4 tháng 2 2019

đặt tổng trên là A

có (2006x-2007)^2008>=0

và (2008y+2009)^2010>=0

từ các điều kiện trên =>A>=0

MÀ ĐỀ BÀI BẮT TÌM A=<0

TỪ 2 ĐIỀU KIỆN TRÊN =>A CHỈ CÓ THỂ =0

(=)(2006x-2007)^2008=0 và (2008y+2009)^2010=0

(=) 2006x-2007=0 và 2008y+2009=0

(=)2006x=2007 và 2008y=2009

(=)x=2007/2006 và y=2009/2008

 vậy x=2007/2006 và y=2009/2008

4 tháng 2 2019

Vì \(\hept{\begin{cases}\left(2006x-2007\right)^{2008}\ge0;\forall x\\\left(2008x+2009\right)^{2010}\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(2006x-2007\right)^{2008}+\left(2008x+2019\right)^{2010}\ge0;\forall x;y\)

Đẳng thức xảy ra khi :

\(\hept{\begin{cases}2006x-2007=0\\2008x+2009=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{2007}{2006}\\y=\frac{-2009}{2008}\end{cases}}\)

Vậy \(x=\frac{2007}{2006};y=\frac{-2009}{2008}\)

17 tháng 12 2017

Viết sai đề thì phải,viết lại đc hk

31 tháng 3 2017

\(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(xz+z+1\right)}+\dfrac{z}{xz+z+1}\)

\(=\dfrac{xz}{xz+z+1}+\dfrac{1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)

Ta có: \(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}=1\)

\(\Leftrightarrow\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)

\(\Leftrightarrow\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+x+1}\)

\(\Leftrightarrow\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+x+1}\)

\(\Leftrightarrow\dfrac{xz+1+z}{1+xz+z}=1\left(đpcm\right)\)

_Chúc bạn học tốt_