TÌM x,y,z BIẾT :
2006x = 2005y + 2004z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt tổng trên là A
có (2006x-2007)^2008>=0
và (2008y+2009)^2010>=0
từ các điều kiện trên =>A>=0
MÀ ĐỀ BÀI BẮT TÌM A=<0
TỪ 2 ĐIỀU KIỆN TRÊN =>A CHỈ CÓ THỂ =0
(=)(2006x-2007)^2008=0 và (2008y+2009)^2010=0
(=) 2006x-2007=0 và 2008y+2009=0
(=)2006x=2007 và 2008y=2009
(=)x=2007/2006 và y=2009/2008
vậy x=2007/2006 và y=2009/2008
Vì \(\hept{\begin{cases}\left(2006x-2007\right)^{2008}\ge0;\forall x\\\left(2008x+2009\right)^{2010}\ge0;\forall y\end{cases}}\)
\(\Rightarrow\left(2006x-2007\right)^{2008}+\left(2008x+2019\right)^{2010}\ge0;\forall x;y\)
Đẳng thức xảy ra khi :
\(\hept{\begin{cases}2006x-2007=0\\2008x+2009=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{2007}{2006}\\y=\frac{-2009}{2008}\end{cases}}\)
Vậy \(x=\frac{2007}{2006};y=\frac{-2009}{2008}\)
\(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(xz+z+1\right)}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{xz}{xz+z+1}+\dfrac{1}{xz+z+1}+\dfrac{z}{xz+z+1}=\dfrac{xz+z+1}{xz+z+1}=1\)
Ta có: \(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}=1\)
\(\Leftrightarrow\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(\Leftrightarrow\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+x+1}\)
\(\Leftrightarrow\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+x+1}\)
\(\Leftrightarrow\dfrac{xz+1+z}{1+xz+z}=1\left(đpcm\right)\)
_Chúc bạn học tốt_
x=1
y=1
z=0
Là bằng 0