2 số tự nhiên a và b , a lớn hơn hoặc bằng b , a và b chia cho 6 có cùng số dư . Chứng minh rằng a trừ b chia hết cho 6 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a=nM+d và b=eM+d (n,e E N và n>e)
a-b=nM+d-(eM+d)=nM-eM=M(n-e) chia hết cho M (đpcm)
Gọi d là số dư của a và b
Gọi k là thương của a và M
Gọi n là thương của b và M
suy ra a-b=(k*M+d)-(n*M+d)=(k-n)*M
Mà a-b=(k-n)*M !!! Suy ra a-b chia hết cho M
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Gọi a=nM+d và b=eM+d ﴾n,e E N và n>e﴿
a‐b=nM+d‐﴾eM+d﴿=nM‐eM=M﴾n‐e﴿ chia hết cho M ﴾đpcm﴿
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_
ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do
MÌNH GIÚP BẠN NÈ
Nếu a mà lớn hơn b hoặc bằng b thì a là số bị chia b là số chia
Theo dấu hiệu chia hết thì nếu a chia hết cho m , b chia hết cho m thì , [a-b] hoặc [a+b] đều chia hết cho m
Nhưng theo công thức [a-b]:m là phải có 2 số cùng chia hết cho m
Nhưng đây lại có 2 số a và b cùng không chia hết cho m nên ta cũng không thể biết chính xác là a-b có thể chia hết cho m hay không
Nên a-b có khả năng chia hết cho m mà cũng không có khả năng vì không có con số chính xác để tính được
Nên a-b có khả năng chia hết cho m
Vì a và b chia cho 6 có cùng số dư.
=>a=6.m+k,b=6n+k(0<k<6)
=>a-b=6.m+k-6.n-k=(6.m-6.n)+(k-k)=6.(m-n)+0=6.(m-n) chia hết cho 6
Vậy a-b chia hết cho 6
l-i-k-e cho mình nha bạn