Tìm n thuộc Z để A=\(\frac{7}{n-1}\)
B=\(\frac{-8}{n+2}\)
C=\(\frac{5}{n+3}\)
Đồng thời nhận giá trị là các số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ chỉ nói cách làm thôi:
Cậu tìm n để A là số nguyên, sau khi ra kết quả thì sẽ đánh số (1)
Rôi cậu tìm n đề B là số nguyên, sau khi ra kết quả sẽ đánh số (2)
Tương tự C cũng vậy.
Sau đó cậu xem trong cả ba phần (1),(2) và (3)
Những số nào trùng nhau sẽ là kết quả
Cậu sướng vì được bạn thân giải hộ nhé
nhớ k đấy
A = \(\frac{7}{N-1}\)=> N - 1 E Ư(7) = { -1 ; 1 ; -7 ; 7 }
TA CÓ BẢNG
N-1 | -1 | 1 | -7 | 7 |
N | 0 | 2 | -6 | 8 |
VẬY N E { 0 ; 2 ; -6 ; 8 }
B = \(\frac{-8}{N+2}\)=> N + 2 E Ư(-8) = {-1 ; -2 ; -4 ; -8 ; 1 ; 2 ; 4 ; 8 }
TA CÓ BẢNG
N+2 | -1 | -2 | -4 | -8 | 1 | 2 | 4 | 8 |
N | -3 | -4 | -6 | -10 | -1 | 0 | 2 | 6 |
VẬY N E { -3 ; -4 ; -6 ; -10 ; -1 ; 0 ; 2 ; 6 }
C = \(\frac{5}{N+3}\)=> N + 3 E Ư(5) = { -1 ; 1 ; -5 ;5 }
TA CÓ BẢNG
N+3 | -1 | 1 | -5 | 5 |
N | -4 | -2 | -8 | 2 |
VẬY N E { -4 ; -2 ; -8 ; 2 }
Để các phân số sau thuộc giá trị nguyên
=> tử phải chia hết cho mẫu(cách làm)
\(\frac{15}{n-2}\)là số nguyên khi 15 \(⋮\)n-2\(\Rightarrow\)n-2\(\in\){ 1;3;5;15;-1;-3;-5;-15}
\(\Rightarrow\)n\(\in\){ 3;5;7;17;1;-1;-3;-13}
\(\frac{8}{n+3}\)là số nguyên khi 8\(⋮\)n+3\(\Rightarrow\)n+3\(\in\){1;2;4;8;-1;-2;-4;-8}
\(\Rightarrow\)n\(\in\){ -2;-1;1;5;-4;-5;-7;-11}
\(\frac{-12}{n}\)là số nguyên khi -12 \(⋮\)n \(\Rightarrow\)n \(\in\){ 1;2;3;4;6;12;-1;-2;-3;-4;-6;-12}
các câu sau cũng tương tự
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
Có n thuộc Z
Có -8/n nguyên ( điều kiện để phân số tồn tại : n khác 0)
=> n thuộc Ư(-8) ( vì n thuộc Z) => n thuộc {1;-1;2;-2;4;-4;8;-8} (*)
Có 13/n-1 nguyên (điều kiện để phân số tồn tại : n khác 1)
=> n-1 thuộc Ư{13} ( vì n thuộc Z nên n-1 thuộc Z)
=> n-1 thuộc {1;-1;13;-13} => n thuộc {2;0;14;-12} (2*)
Có 4/n+2 nguyên ( điều kiện để phân số tồn tại : n khác -2)
=> n+2 thuộc Ư(4) ( vì n thuộc Z nên n+2 thuộc Z )
=> n+2 thuộc {1;2;4;-1;-2;-4} => n thuộc {-1;0;2;-3;-4;-6} (3*)
Từ (1*) ; (2*) và (3*) => n=2 ( thỏa mãn điều kiện n thuộc Z ; n khác 0; n khác 1; n khác -2)
Tích cho mk nhoa !!!!!! ~~~
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
\(\Rightarrow\) : 7 chia hết cho n-1 hay n-1 \(\in\)Ư(7)=1;-1;7;-7
n-1=1 n-1=-1 n-1=7 n-1=-7 phần B và C tương tự
n=1+1 n=-1+1 n=7+1 n=-7+1
n=2 n=0 n+8 n=6