Cho biểu thức :
S = 1-3+3^2-3^3+3^4-...-3^2021+3^2022
Tính : 45-3^2023
giúp mik vs, mai mik phải thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
Lời giải:
\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)
\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)
\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)
\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)
Số số lẻ trong khoảng từ 1 đến 2023 là:
\(\dfrac{2023-1}{2}+1=\dfrac{2022}{2}+1=1011+1=1012\left(số\right)\)
Ta có: 1-3=5-7=9-11=....=2021-2023=-2
=>Sẽ có \(\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số 1-3+5-7+...+2021-2023
=>Tổng của dãy số này là: \(506\cdot\left(-2\right)=-1012\)
Dãy số 1 - 3 + 5 - 7 + 9 - 11 + … + 2021 - 2023 là một dãy số xen kẽ. Để tính tổng của dãy số này, ta sẽ sử dụng công thức tổng của dãy số hình học.
Đầu tiên, xác định các thông số:
a (phần tử đầu tiên): 3/5 (vì 1 là phần tử đầu tiên, và 3/5 là giá trị tương ứng).r (tỷ số chung): -1/5 (vì các phần tử xen kẽ đều nhân với -1/5 để chuyển từ phần tử trước đó sang phần tử tiếp theo).Sử dụng công thức tổng của dãy số hình học:
Tổng của dãy số xen kẽ là:S∞=1−ra
Thay giá trị a và r vào:S∞=1−(−1/5)3/5=6/53/5=21
Bài 1 :
a, \(\frac{3}{4}:x=\frac{5}{12}\)
\(x=\frac{3}{4}:\frac{5}{12}\)
\(x=\frac{9}{5}\)
b, \(x-\frac{1}{2}=\frac{3}{4}:\frac{3}{2}\)
\(x-\frac{1}{2}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{2}\)
\(x=1\)
c, \(1\frac{1}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x=\frac{3}{4}+\frac{1}{2}\)
\(\frac{3}{2}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{3}{2}\)
\(x=\frac{5}{6}\)
Bài 2 :
\(A=\frac{-3}{5}+\left(\frac{-2}{5}-99\right)\)
\(A=\frac{-3}{5}+\frac{-2}{5}-99\)
\(A=\left(-1\right)-99\)
\(A=-100\)
\(B=\left(7\frac{2}{3}+2\frac{3}{5}\right)-6\frac{2}{3}\)
\(B=\left(\frac{23}{3}+\frac{13}{5}\right)-\frac{20}{3}\)
\(B=\frac{23}{3}+\frac{13}{5}-\frac{20}{3}\)
\(B=\left(\frac{23}{3}-\frac{20}{3}\right)+\frac{13}{5}\)
\(B=1+\frac{13}{5}\)
\(B=\frac{18}{5}\)
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
a: \(\left(x-1\right)^3+27\)
\(=\left(x-1+3\right)\left(x^2-2x+1+3x-3+3\right)\)
\(=\left(x+2\right)\left(x^2+x+1\right)\)
b: \(\left(x-2\right)^3-8\)
\(=\left(x-2-2\right)\left(x^2-4x+4+2x-4+4\right)\)
\(=\left(x-4\right)\left(x^2-2x+4\right)\)
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1