Tìm n nguyên sao cho \(X=\)\(\sqrt[3]{n^2+2160}\) là một số nguyên.
Giải bằng máy Casio fx 570 nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+x+0,1}=a\ge0\) cho dễ nhìn
\(\Rightarrow\sqrt{2009+2010a}-\sqrt{2009-2010a}=20\)\(\left(0\le a\le\frac{2009}{2010}\right)\)
\(\Leftrightarrow2009+2009-2\sqrt{2009^2-2010^2a^2}=400\)
\(\Leftrightarrow\sqrt{2009^2-2010^2a^2}=1809\)
\(\Leftrightarrow2009^2-2010^2a^2=1809^2\)
\(\Leftrightarrow a^2=\frac{7636}{40401}\)
\(\Rightarrow x^2+x+0,1=\frac{7636}{40401}\)
Đây là phương trình bậc 2 nên bấm máy tính giải nghiệm đi nha.
1194007 - 23 = 1193984 chia hết cho n
158034 - 41 = 157993 chia hết cho n
n = ƯCLN(1193984; 157993) = 583
http://dethi.violet.vn/present/showprint/entry_id/11192189
coi link đó nha
ĐKXĐ: \(\sqrt{2}\le x\le\sqrt{2}\)
Ta có : \(2x^2-x+\sqrt{2-x^2}=\frac{7}{2}+\sqrt{2-x}\)
\(\Leftrightarrow4x^2-2x+2\sqrt{2-x^2}=7+2\sqrt{2-x}\)
\(\Leftrightarrow-4\left(2-x^2\right)+2\left(2-x\right)+2\sqrt{2-x^2}-2\sqrt{2-x}-3=0\)
Đặt \(a=\sqrt{2-x^2}\) , \(b=\sqrt{2-x}\) , pt trở thành :
\(-4a^2+2b^2+2a-2b-3=0\)
Tới đây bạn lập ĐENTA rồi tìm mối liên hệ giữa a và b, từ đó suy được pt mới ẩn x.
Vì được dùng máy tính nên bạn tự tìm nghiệm nhé :)