Cho tam giác ABC vuông tại A, có đường cao AH. Biết AB= 6cm, AC= 8cm
a) Chứng minh tam giác HBA đồng dạn với tam giác ABC
b) Tính độ dài BC và AH
c) Chứng minh AB2= BC+BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB^2=6^2-4,8^2=3,6^2\)
=>HB=3,6(cm)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: BC=10cm
AH=4,8cm
BH=3,6cm
c: DB/DC=AB/AC=6/8=3/4
a: CB=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA^2=BH*BC
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA/BD=BH/BI
=>BA/BH=BD/BI=BC/BA
=>ΔBDC đồng dạng với ΔBIA
a)Có tg ABC vuông tại a
áp dụng đl pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\\ \Rightarrow BC=10\left(cm\right)\)
Có BD là đg phân giác tg ABC
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\left(1\right)\)
lai co: AD+DC=AC=8
=>AD=8-DC
thay vao 1
\(\Rightarrow\dfrac{8-DC}{DC}=\dfrac{3}{5}\)
\(\Leftrightarrow DC=5\\ \Rightarrow AD=3\)
b) xét tg ABC và tg HBA có:
+góc BAH = AHB(=90 độ)
+góc B chung
=> tg ABC đồng dạng tg HBA (gg) (đpcm)
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{BA}\\ \Leftrightarrow AB^2=HB.BC\left(dpcm\right)\)
c) có: + góc C =\(90^o-\widehat{B}\) (goc A = 90 do)
+ \(\widehat{BAH}=90^o-\widehat{B}\) (goc AHB =90do)
=> goc BAH = goc C
xet tg ABI va tg CBD co
+goc BAH =goc C
+ goc ABI = goc DBC (BD la phan giac)
=> tg ABI va tg CBD dong dang (g.g) (dpcm)
a, \(\Delta\) HBA và \(\Delta\) ABC:
^B - chung
^H = ^A= 900 => tg HBA đồng dạng ABC.
b, Vì tam giác BHA đồng dạng tg ABC:
=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)
c, ADTC tia phân giác:
\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)
ADTC dãy tỉ số bằng nhau
\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)
\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm