Cho tam giác ABC vuông tại A (AB<AC),E là trung điểm của BC.Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O là giao điểm của AE và DF
a)Chứng minh tứ giác ADEF là hình chữ nhật
b)Gọi K là điểm đối xứng của E qua D. Chứng minh tứ giác AECK là hình thoi
c)Kẻ EM vuông góc với AK tại M. Chứng minh DM⊥MF
d)Kéo dài BD cắt KC tại I, cho AB=3cm, AC=4cm. Tính độ dài đoạn KI
a: Xét tứ giác ADEF ccó
gócc ADE=góc AFE=góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác AECK có
Dlà trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
c: ΔEMA vuông tại M
mà MO là trung tuyến
nên MO=EA/2=DF/2
Xét ΔMDF có
MO là trung tuyến
MO=DF/2
Do đó: ΔMDF vuông tại M