tìm số tự nhiên a,b thõa mãn:
(3^a+1)(3^a+2)(3^a+3)+692.b^6=2012
giuups vs các bạn ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (3^a-1)....(3^a-6)là 6 số tự nhiên liên tiếp nên (3^a-1) ....(3^a-6): 6
suy ra : (3^a-1).... (3^a-6) chẵn
mà 20159 lẻ
nên 2019 chẵn
=> b=0
ta có : (3^a-1) ...(3^a-6)=1+ 20159
ta có : (3^a-1) ....(3^a-6)= 20160= 8.7.6.5.4.3
=>3^a-1=8
3^a=9
a=2
vậy ...........
vì 6 <a <10 --- > a sẽ là 7 , 8 , 9
8 < c <11 -- > c sẽ là 9 , 10
Mà a < b <c -- > b sẽ là 9 , c là 10 và a là 8
\(a+b+c\le9+9+9=27\)
Do đó giá trị lớn nhất của a + b + c là 1 số có 2 chữ số, mà abc có 3 chữ số.
Do đó không có abc thỏa mãn.
vì (3^a-1)(3^a-2)......(3^a-6) là 6 số tự nhiên liên tiếp nên (3^a-1)....(3^a-6):6
nên =>(3^a-1).....(3^a-6) chẵn
mà 20159 lẻ =>2018 lẻ =>b=0
ta có (3^a-1)...(3^a-6)=1+ 20159=20160
=>(3^a-1).....(3^a-6)=20160= 8;7;6;5;4;3.
=>3^a-1=8
3^a=9
a=2
vậy..........
a/ Ta có: `2a = 3b => a/3 = b/2`
Đặt `a/3 = b/2 = k` \(\left(k\ne0\right)\)
`=> a = 3k ; b = 2k`
`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)
Vậy `M = 11/38`.
b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015
Vì \(20142015⋮3\) nên \(a^2⋮3\)
\(\Rightarrow a^2⋮3^2\)
\(\Rightarrow a^2⋮9\)
Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)
`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015
\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương (đpcm)