CHO HÌNH THOI ABCD CÓ AB=AC. MỘT ĐƯỜNG THẲNG BẤT KÌ QUA B CẮT TIA ĐỐI CỦA TIAAD TẠI E VÀ CẮT TIA ĐỐI CỦA TIA CD TẠI F. GỌI GIAO ĐIỂM CỦA À VÀ CE LÀ O.CHỨNG MINH:
a, AE*CF KHÔNG ĐỔI
b, TAM GIÁC ACE ĐỒNG DẠNG VỚI TAM GIÁC CFA
c,số đo góc EOF KHÔNG ĐỔI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tg EAB và tg BCF có
A1=C1 ( cùng bù góc BAC = góc BCA)
góc F = góc EBA ( đồng vị của AB//CF)
Do đó tg EAB ~ tg BCF (gg)
=> AE/BC = AB/CF hay AE.CF=AB.BC => AE.CF = AB2 (AB=BC)
Màu AB2 ko đổi => AE.CF ko đổi
Vậy AE.CF ko đổi
b) Xét tam giác AEC và tg CAF có
AC/CF = AE/AC (vì AE.CF =AB2 hay AE.CF=AC2)
góc EAC = góc FCA =120 độ ( vì tg ABC đều =>A1+BAC=120 độ; C1+BCA =120 độ)
Do đó tg AEC ~ tg CAF (cgc)
c) tg AEC ~ tg CAF => góc E1= góc F1
Mà A1+BAC=120 độ
=> A1+E1=120 độ ( góc BAC= góc E1=60 độ)
Do đó EOF =120 độ ( do là tổng 2 góc trong ko kề vs nó của tg EAO)
Vậy góc EOF ko đổi
sai r bạn ơi, góc A1+E1 ko bang 120 bạn nhé, Góc BAC+A1=120 chưa thể suy ra nhanh như thế
Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)
\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)
Xét 2 tam giác vuông AED và MAB có:
\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)
\(\Rightarrow BM.ED=BO.BD\)
Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))
\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)
Xét hai tam giác BOM và BFD có:
\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)
a: Vì BC//AD nên EB/BA=CE/CF
Vì DC//AB nên AD/DF=EC/FC
=>EB/BA=AD/DF
b: Vì ABCD là hình thoi và góc A=60 độ
nên AB=BC=CD=AD=AC
Xét ΔEBD và ΔBDF có
góc EBD=góc BDF
EB/BD=BD/DF
=>ΔEBD đồng dạng với ΔBDF
c: ΔEBD đồng dạng với ΔBDF
=>góc BED=góc DBF
=>ΔBDI đồng dạng với ΔEDB
=>góc BID=góc EBD=120 độ