Toán 8 bài 3: Hằng đẳng kiến thức đáng nhớ.
Có (a+b)2 = (a-b)2 +4ab
Tính (a+b), biết a-b=20 và a.b=3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 3x+2). (3x-2)+(x-3)2-10x
=9x2-4+x2-6x+9-10x
=9x2-4+x2-6x+9
=10x-16x+5
(2x+y)2+ (x-2y)2-5. (x+y).(x-y)
=4x2+4xy+y2+x2-4xy+4y2-5.(x2-y2)
=4x2+4xy+y2+x2-4xy+4y2-5x2+5y2
=10y2
(3x-5)2- x.(3x-5)
=9x2-30x+25-3x2+15
=6x2-30x+40
Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha
(a2+ab+b2).(a2 - ab + b2) - (a4+b4)
= (a2+b2)2-(ab)2-a4-b4
= a4+2(ab)2+b4-(ab)2-a4-b4
= (ab)2
Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha
phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.
=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.
đề chứng mình gì rứa?
A^3+B^3
=A^3+B^3+3*A^2*B+3*A*B^2-3A*B^2-3*A^2*B^2
=(A+B)^3-3AB(A+B)
=S^3-3*P*S
a) \(\left(a^2+b+c\right)^2\)
\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)
\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)
b) \(\left(a+b+c\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ca+2bc+c^2\)
a,
C1: (a - b + c)2 = (a - b + c) (a - b + c)
= a (a - b + c) - b (a - b + c) +c (a - b + c)
= a2 - ab + ac - ab + b2 - bc + ac - bc + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
C2: (a - b + c)2 = [ (a - b) + c ]2
= (a - b)2 + 2c (a - b) + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
b,
C1: (a + b + c)(a + b - c) = a (a + b - c) + b (a + b - c) + c (a + b - c)
= a2 + ab - ac + ab + b2 - bc + ac + bc - c2
= a2 + 2ab + b2 - c2
C2: (a + b + c)(a + b - c) = [ (a + b) + c ] [ ( a+ b) - c ]
= (a + b)2 - c2
= a2 + 2ab + b2 - c2
hok tốt ~
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
(a+b)\(^2\)có khác j (a+b)\(^2\)đâu bn
(a+b)2 = a2+2ab+b2=a2-2ab+4ab+b2=a2-2ab+b2+4ab=(a-b)2+4ab