Cho tam giác ABC có AB=AC gọi M là trung điểm của BC Chứng minh a) Trên nửa mặt phẳng không có a vẽ điểm N sao cho NB = NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔADC và ΔEDB có
\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)
DC=DB(D là trung điểm của BC)
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
Do đó: ΔADC=ΔEDB(g-c-g)
Mình không vẽ hình, bạn tự vẽ nhé!
a) M là trung điểm của BC \(\Rightarrow BM=MC\)
Xét \(\Delta BAM\)và \(\Delta CDM\)có:
MA=MD ( giả thiết )
\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA=MD ( giả thiết )
\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )
\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)( 2 góc tương ứng ) ở vị trí so lê trong
\(\Rightarrow\)AC//BD
c) Đề bài không rõ ràng mình không làm được
d) Đề bài không rõ ràng mình không làm được
Chúc bạn học tốt!
a, vì ab =ac (gt)
=> abc là tam giác cân tại a
vì tam giác abc cân tại a
=> góc b = góc c
vì m là trung điểm bc
=> bm = mc
xét tam giác amb và tam giác amc có
bm =mc
góc b = góc c
ab = ac
=> tam giác amb = tam giác amc (cgc)
b, vì 2 tam giác chứng minh ở câu a bằng sau
=> bam = cam( cặp góc tương ứng)
=> am là tia p/g của bac
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Câu 1:
1. Vì P,QP,Q lần lượt là trung điểm của AB,ACAB,AC nên PQPQ là đường trung bình của tam giác ABCABC ứng với BCBC
⇒PQ=1BC=MC⇒PQ=1BC=MC và PQ∥BCPQ∥BC hay PQ∥MCPQ∥MC
Tứ giác PQCMPQCM có cặp cạnh đối PQPQ và MCMC vừa song song vừa bằng nhau nên PQCMPQCM là hình bình hành.
2.Vì tam giác ABCABC cân tại AA nên đường trung tuyến AMAM đồng thời là đường cao. Hay AM⊥BCAM⊥BC
Tứ giác NAMBNAMB có 2 đường chéo MN,ABMN,AB cắt nhau tại trung điểm PP của mỗi đường nên NAMBNAMB là hình bình hành.
Hình bình hành NAMBNAMB có 1 góc vuông (ˆAMBAMB^) nên NAMBNAMB là hình vuông.
⇒NB⊥BM⇒NB⊥BM hay NB⊥BCNB⊥BC (đpcm)
3.
Vì PQCMPQCM là hình bình hành nên PM∥QC;PM=QCPM∥QC;PM=QC. Mà P,M,NP,M,N thẳng hàng; PM=PNPM=PN nên PN∥QCPN∥QC và PN=QCPN=QC
Tứ giác PNQCPNQC có cặp cạnh đối PN,QCPN,QC song song và bằng nhau nên PNQCPNQC là hình bình hành.
Do đó PC∥QN(1)PC∥QN(1)
Mà PC∥QFPC∥QF (2)
Từ (1);(2)⇒Q,N,F(1);(2)⇒Q,N,F thẳng hàng (đpcm)
ΔABC cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(1)
NB=NC
nên N nằm trên đường trung trực của BC(2)
Từ (1), (2) suy ra A,M,N thẳng hàng