cho Δ ABC cân tại A (A<90o). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a) CM: ΔADE cân
b) CM: DE // BC
c) Gọi I là giao điểm của BD và CE. CM: IB=IC
d) CM: AI vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHN và ΔCHM có
AH=CH
góc HAN=góc HCM
AN=CM
=>ΔAHN=ΔCHM
b: Xet ΔAHM và ΔBHN co
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
làm dùm mình nha các bạn có hình của đường cao ah xong kẻ thêm những chi tiết của câu a và b nha
(Tự vẽ hình)
a) Xét \(\Delta BCK\) và \(\Delta CBH\) có:
\(\widehat{BKC}=\widehat{BHC}=90^0\)
\(BC\) chung
\(\widehat{BCH}=\widehat{CBK}\) (tính chất tam giác cân)
\(\Rightarrow\Delta BCK=\Delta CBH\) (ch-gn) \(\Rightarrow BK=CH\)
b) Do \(AB=AC;BK=AH\Rightarrow AB-BK=AC-CH\Rightarrow AK=AH\)
\(\Rightarrow\dfrac{AK}{AB}=\dfrac{AH}{AC}\Rightarrow HK//BC\) (ĐL Ta - let)
bn tự vẽ hình nhé
a)Xét tam giác ACK và tam giác ABH:
góc K=góc H(=90độ)
AB=AC(gt)
góc A chung
vậy 2 tam giác này bằng nhau (cgv.gnk)
Bài 1:
a, Xét tg ABD và tg EBD, có:
góc A= góc E(90o)
BD chung
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD.
b, Ta có: tg ABD= tg DBE(cm câu a)
=>AB=BE(2 cạnh tương ứng)
=>tg ABE cân tại B.
Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.
c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)
=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o
Vì tg ABE là tg đều, nên góc A=60o.
Ta có: góc A=góc BAE+ góc AEC.
=>90o=60o+ góc AEC=30o.
=> góc AEC= góc C(=30o)
=>tg AEC cân tại E.
=>AE=EC.
Mà AE=5cm(tg đều), nên EC=5cm.
Vậy, độ dài cạnh BC là:
BE+EC=5+5=10.
=>BC= 10cm.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó; ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔiBC cân tại I
=>IB=IC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc với BC