K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
22 tháng 12 2022

Thầy gợi ý cách xác định thiết diện thông qua hình vẽ sau:

loading...

Em kéo dài KN cắt AC tại P (trong mp(ABC)), từ đó tiếp tục dựng hình để xác định giao tuyến với các mặt còn lại của hình chóp để có thiết diện là tứ giác KMQN nhé

2 tháng 7 2017

Chọn A.

Phương pháp : Dựng điểm Q và áp dụng định lý Menenaus.

Cách giải : Gọi I là giao điểm của PN và AC. Suy ra Q là giao điểm của IM và SC.

Áp dụng định lý Menenaus cho tam giác SAC ta có :

17 tháng 1 2018

Chọn đáp án A

Trong mặt phẳng (ABC), gọi E = NP ∩ AC

Khi đó Q chính là giao điểm của SC với EM

Áp dụng định lý Menelaus vào tam giác ABC ta có:

Áp dụng định lý Menelaus vào tam giác SAC ta có:

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Gọi \(J=IP\cap SC\), ta có \(J=SC\cap\left(MNP\right)\)

Gọi \(E=NP\cap CD\), ta có \(E=CD\cap\left(MNP\right)\)

Gọi \(K=JE\cap SD\), ta có \(K=SD\cap\left(MNP\right)\)

26 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a lần lượt tìm giao điểm của mặt phẳng (MNP) với các đường thẳng chứa các cạnh của hình chóp.

Gọi I = MN ∩ SB

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy I = SB ∩ (MNP).

Từ đó, làm tương tự ta tìm được giao điểm của (MNP) với các cạnh còn lại.

Cụ thể :

Gọi J = IP ∩ SC, ta có J = SC ∩ (MNP)

Gọi E = NP ∩ CD, ta có E = CD ∩ (MNP)

Gọi K = JE ∩ SD, ta có K = SD ∩ (MNP)

29 tháng 3 2017

Đáp án A

Vì tam giác đều nên 

9 tháng 10 2019

Đáp án A

Gọi H là hình chiếu của S lên mặt đáy A B C suy ra S H ⊥ A B C thì H là trung điểm của AC.

Ta có:

S H = 9 − 2 = 7 ; K = P Q ∩ A B ; A B = A C = 2

Dựng  P E / / A B ta có:

K B P E = Q B Q E = 1 ⇒ K B = P E = 1 3 A B = 2 3

S M N K = 1 2 d K ; M N . M N = 1 2 N B . M N = 1 2 d P ; A B C = 2 3 . S H = 2 3 7 ⇒ V P . M N K = 1 3 d P ; A B C . S M N K = 7 9

Lại có:

K Q K P = 1 2 ⇒ V Q . M N P V K . M N P = 1 2 ⇒ V Q . M N P = 1 2 V K . M N P = 7 18  

30 tháng 4 2019

Chọn D.

2 tháng 4 2019

Chọn đáp án B

Do S.ABCD là hình chóp tứ giác đều nên mỗi mặt bên là một tam giác cân tại đỉnh S.

Theo giả thiết ta có

 

Cắt hình chóp theo cạnh bên SA rồi trải các mặt bên thành một mặt phẳng ta được hình vẽ bên sao cho khí ghép lại thì A ≡ A '

Suy ra A S A ' ⏜ = 4 . A S B ⏜ = π 3 và ∆ S A A ' đều cạnh SA = a

Khi đó tổng AM + MN + NP + PQ là tổng của các đường gấp khúc.

Tổng này đạt nhỏ nhất bằng AQ nếu xảy ra trường hợp các điểm A, M, N, P, Q thẳng hàng.

Mà  ∆ S A A ' đều có Q là trung điểm SA nên A Q = S A 3 2 = a 3 2  

Vậy m i n A M + M N + N P + P Q = a 3 2