K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

`B17:`

`a)` Với `x \ne +-3` có:

`A=[x+15]/[x^2-9]+2/[x+3]`

`A=[x+15+2(x-3)]/[(x-3)(x+3)]`

`A=[x+15+2x-6]/[(x-3)(x+3)]`

`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`

`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)

   `=>` Ko có gtr nào của `x` t/m

`c)A in ZZ<=>3/[x-3] in ZZ`

   `=>x-3 in Ư_3`

 Mà `Ư_3={+-1;+-3}`

`@x-3=1=>x=4`

`@x-3=-1=>x=2`

`@x-3=3=>x=6`

`@x-3=-3=>x=0`

________________________________

`B18:`

`a)M=1/3`             `ĐK: x  \ne +-4`

`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`

`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`

`<=>32/[x-4].[x+4]/32=1/3`

`<=>3x+12=x-4`

`<=>x=-8` (t/m)

ĐKXĐ: \(x\notin\left\{2;-2;-1\right\}\)

a) Ta có: \(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\dfrac{3\left(x+1\right)}{x\left(x+2\right)}\)

\(=\left(\dfrac{x+4x+8}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{5x+8+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6x+6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)}{x-2}\cdot\dfrac{x}{3\left(x+1\right)}\)

\(=\dfrac{2x}{x-2}\)

b) Để A nguyên thì \(2x⋮x-2\)

\(\Leftrightarrow2x-4+4⋮x-2\)

mà \(2x-4⋮x-2\)

nên \(4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{0;1;3;4;6\right\}\)

Vậy: Khi \(x\in\left\{0;1;3;4;6\right\}\) thì A nguyên

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: \(\left\{\begin{matrix} x+1\neq 0\\ x-1\neq 0\\ 2-2x^2\neq 0\end{matrix}\right.\Leftrightarrow x\neq \pm 1\)

b) 

\(A=\left[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x+1}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}\right].\frac{1}{x+1}=\frac{x^2+2x+1}{(x-1)(x+1)}.\frac{1}{x+1}\)

\(=\frac{(x+1)^2}{(x-1)(x+1)}.\frac{1}{x+1}=\frac{1}{x-1}\)

Để $A$ nguyên thì $1\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1\right\}$

$\Rightarrow x\in\left\{0;2\right\}$ (đều thỏa mãn đkxđ)

 

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)

\(=\left(\dfrac{2x\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{2\left(x+1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{4x}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2\left(x^2+2x+1\right)}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2\left(x+1\right)^2}{2\left(x+1\right)^2\cdot\left(x-1\right)}\)

\(=\dfrac{1}{x-1}\)

b) Để A nguyên thì \(1⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(1\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1\right\}\)

hay \(x\in\left\{2;0\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;0\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;0\right\}\)

13 tháng 5 2021

`A=1/3`
`<=>3\sqrtx-3=\sqrtx`
`<=>2\sqrtx=3`
`<=>x=9/4`

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

12 tháng 8 2021

a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b) Thay x=3+2\(\sqrt{2}\)

A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0

\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)

13 tháng 8 2021

thank

5 tháng 12 2021

\(a,A=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ A=\dfrac{-6x+18}{2\left(x-3\right)\left(x-1\right)}=\dfrac{-6\left(x-3\right)}{2\left(x-3\right)\left(x-1\right)}=\dfrac{-3}{x-1}\\ b,A\in Z\Leftrightarrow x-1\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\)