K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

A B C D O M N

c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)

\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)

Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)

d) Áp dụng hệ quả định lí Ta-lét,ta có :

\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)

\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)

\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)

Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)

Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)

P/S : Bạn xem lại đề để có thể xác định E,F nhé

1 tháng 3 2017

chịu rùi tớ không biết !!!

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đây nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

27 tháng 12 2022

THAM KHẢO

a) BK//OC, CK//OB.

Mà OB ^OC Þ OBKC là hình chữ nhật.

b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.

Þ KO = BC Þ ĐPCM.

c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông

16 tháng 6 2017

A B C D O F E

a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: \(\frac{OF}{OB}=\frac{AO}{OC}\)

Tương tự ta có: \(\frac{OE}{OA}=\frac{OB}{OD}\) mà AB // CD nên \(\frac{OB}{OA}=\frac{OA}{OC}\)

Từ đó suy ra \(\frac{OE}{OA}=\frac{OF}{OB}\Rightarrow\) EF // AB.

b) Do AB // EF nên \(\frac{EF}{AB}=\frac{OF}{OB}=\frac{OA}{OC}=\frac{AB}{CD}\Rightarrow\frac{EF}{AB}=\frac{AB}{CD}\Rightarrow AB^2=EF.CD\)

c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên \(\frac{S_{OAB}}{S_{OBC}}=\frac{OA}{OC}\Rightarrow\frac{S_1}{S_4}=\frac{OA}{OC}\)

Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên \(\frac{S_{OAD}}{S_{ODC}}=\frac{OA}{OC}\Rightarrow\frac{S_3}{S_2}=\frac{OA}{OC}\)

Vậy thì \(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\left(đpcm\right)\)

ABCDOFE

a) Do AF//BC nên áp dụng hệ quả định lý Talet ta có: OFOB =AOOC 

Tương tự ta có: OEOA =OBOD  mà AB // CD nên OBOA =OAOC 

Từ đó suy ra OEOA =OFOB ⇒ EF // AB.

b) Do AB // EF nên EFAB =OFOB =OAOC =ABCD ⇒EFAB =ABCD ⇒AB2=EF.CD

c) Ta thấy tam giác OAB và OBC chung chiều cao hạ từ đỉnh B nên SOABSOBC =OAOC ⇒S1S4 =OAOC 

Tam giác OAD và ODC chung chiều cao hạ từ đỉnh D nên SOADSODC =OAOC ⇒S3S2 =OAOC 

Vậy thì S1S4 =S3S2 ⇒S1.S2=S3.S4(đpcm)

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link sau nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath