Cho a, d \(\in\)N*. Chứng minh rằng d=1 nếu:
a) a và 2a-1 cùng chia hết cho d
b) a và 6a-1 cùng chia hết cho d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a chia hết cho d thì 2a chia hết cho d.
Ta lại có 2a - 1 chia hết cho d nên 2a - (2a - 1) = 2a - 2a + 1 = 1 chia hết cho d.
Vậy d = 1
NẾU A CHIA HẾT CHO D THÌ 2A CHIA HẾT CHO D , TA LẠI CÓ 2A-1 CHIA HẾT CHO D NÊN 2A-(2A-1) CHIA HẾT CHO D,TỨC LÀ 1 CHIA HẾT CHO D , VẬY D = 1
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
a)a chia hết cho d =>2a chia hết cho d
Do 2a-1 cũng chia hết cho d
Mà 2a và 2a-1 là 2 STN liên tiếp=>2a và 2a-1 nguyên tố cùng nhau =>d=1
b)Tương tự nhân a với 6