Tinh góc A của tam giác ABC biết tổng cúa góc A và góc B bằng góc C; 2 lần góc A bằng 3 lần góc B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) Ta có góc ở đáy của tam giác cân bằng 50 độ. Do đó tổng của hai góc đáy của tam giác cân bằng 50.2=100độ. Góc ở đỉnh bằng 180-100=80 độ
b) Ta có góc đỉnh của tam giác câ là 70 độ. Do đó mỗi góc ở đáy bằng (180-70):2=55 độ
c) góc B= góc C=(180-A):2
a, Trong tg ABC, có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(62^{0^{ }}+\)\(\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=118^0\)
Vì BO và CO là tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)nên \(\widehat{OBC}+\widehat{OCB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{118^0}{2}=59^0\)
Trong tg BOC có \(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^0\)
\(59^0+\widehat{BOC}=180^0\)
\(\widehat{BOC}=121^0\)
\(\)\(MIK\)\(NHAAAA!\)
Theo đề bài, ta có:
(Nếu như vậy thì thường là \(\widehat{C}=90\)thì \(\widehat{A}+\widehat{B}=\widehat{C}=90\)
Áp dụng tính chất của dãy tỉ số bằng nhau;
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{2}=\frac{\widehat{A}+\widehat{B}}{3+2}=\frac{90}{5}=18\)
Do đó:
\(\widehat{A}=54\)
Vậy \(\widehat{A}=54\)
Ta có: A + B = C
Mặt khác ta lại có: 2A=3B
hay A x\(\frac{2}{3}\)= B
Trong tam giác ABC ta có: A+B+C= 1800
hay: A + A x\(\frac{2}{3}\)+A +A x\(\frac{2}{3}\)= 1800
A x (1+\(\frac{2}{3}\)+1 +\(\frac{2}{3}\)) =1800
A x \(\frac{10}{3}\)=1800
A= 1800 : \(\frac{10}{3}\)
A= 540