K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Cách giải khác:

Dư đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta được \(P_{Min}=1\)

Thật vậy cần chứng minh \(Σ\frac{1}{4x^2-yz+2}\ge1\LeftrightarrowΣ\left(\frac{1}{4x^2-yz+2}-\frac{1}{3}\right)\ge0\)

\(\LeftrightarrowΣ\frac{1-4x^2+yz}{4x^2-yz+2}\ge0\LeftrightarrowΣ\frac{xy+xz+2yz-4x^2}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\frac{\left(z-x\right)\left(2x+y\right)-\left(x-y\right)\left(2x+z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(z^2+2xy+2\right)\left(z^2-xy+2\right)\ge0\)

25 tháng 2 2017

3/2 nha

5 tháng 2 2018

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

10 tháng 2 2018

bạn có thể trình bày theo bdt cô si hay bunhia  được không

18 tháng 3 2018

  Ta có 1/x+1/y+1/z=0 
=>1/x+1/y=-1/z 
=>(1/x+1/y)^3= (-1/z)^3 
=>1/x^3+1/y^3+3.1/x.1/y.(1/x+1/y) =-1/z^3 
=>1/x^3+1/y^3+1/z^3= -3.1/x.1/y.(1/x+1/y) =3/(xyz) (vì 1/x+1/y=-1/z) 
Mặt khác: 1/x+1/y+1/z=0 
=>(xy+yz+zx)/(xyz)=0 
=>xy+yz+zx=0 
A=yz/x^2 +2yz + xz/y^2+ 2xz + xy/z^2+ 2 xy 
=xyz/x^3+xyz/y^3+xyz/z^3 +2(xy+yz+zx) (vì x,y,z khác 0) 
=xyz(1/x^3+1/y^3+1/z^3) (vì xy+yz+zx=0) 
=xyz.3/(xyz) (vì 1/x^3+1/y^3+1/z^3=3/(xyz) ) 
=3 
Vậy A=3.

6 tháng 4 2017

Dự đoán dấu "=" xảy ra khi \(x=y=z=1\) ta tìm được \(P=9\)

Ta sẽ chứng minh nó là \(GTLN\) của \(P\)

Thật vậy, ta cần chứng minh 

\(Σ\frac{11x+4y}{4x^2-xy+2y^2}\le\frac{3\left(xy+yz+xz\right)}{xyz}\)

\(\Leftrightarrow\left(\frac{3}{x}-\frac{11x+4y}{4x^2-xy+2y^2}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}+\frac{1}{y}-\frac{1}{x}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(4x^2-xy+2y^2\right)}\ge0\) (luôn đúng)

Vậy \(P_{Max}=9\) khi \(x=y=z=1\)

1 tháng 6 2020

ggvcgfdsx

28 tháng 11 2019

\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)

\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).

Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).

7 tháng 12 2018

các bạn giải nhanh cho mình nhé vì mình đang cần gấp

7 tháng 12 2018

Mình nghĩ bạn viết hơi sai đề bài.

\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)

Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)

\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)

Khi đó:

 \(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)

15 tháng 1 2018

Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\Rightarrow\)\(x+y+z=xyz\)

Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\)\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)

Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

         \(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)

Dấu "=" xảy ra khi A = B :

Ta được :

\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)

18 tháng 5 2016

Ta có :

\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)  (1)

 Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :

\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)

\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\)   (2)

Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)

 Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)

Lập bảng biến thiên sau :

t f'(t) f(t) 0 1 - + 8 8 + + 3 2

Từ đó suy ra :

            \(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)

Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)

Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)

14 tháng 6 2016

ucche

27 tháng 12 2016

\(xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\\ \Rightarrow yz+xz+xy=0\)

\(A=\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\\ \Leftrightarrow A=\frac{x^3y^3+x^3z^3+y^3z^3}{x^2y^2z^2}\)

Ta có :\(yz+xz+xy=0\)

         \(\Rightarrow y^3x^3+x^3z^3+x^3y^3=-3xyz\left(y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz\right)\)

                                                  \(=-3xyz\left(yz+xz\right)\left(xz+xy\right)\left(yz+xy\right)\)

                                                   \(=-3xyz\left(-xy\right)\left(-yz\right)\left(-xz\right)\\ =3x^2y^2z^2\)

      \(\Rightarrow A=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

14 tháng 5 2018

Từ dữ kiện đề bài => x + y + z = xyz

Ta có : 

\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

                                                                                                                   \(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)

Tương tự với hai hạng tử còn lại , suy ra 

\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Vậy Max = 3/2 <=> x = y = z 

Nguồn : Đinh Đức Hùng