Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn ( A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O,R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a. Cm: OH.OM không đổi
b. Cm: Bốn điểm M,A,I,O cùng thuộc 1 đường tròn
c. Gọi K là giao điểm của OI với HK.
Cm: KC là tiếp tuyến của đường tròn (O;R)
a: Xét ΔOAM vuông tại A có AH là đường cao
nên OH*OM=OA^2=R^2 ko đổi
b: Xét tứ giác MAIO có
góc MAO=góc MIO=90 độ
nên MAIO là tứ giác nội tiếp