K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

Xét  a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)

   \(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e

    \(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)

Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2

tương tự b,c,d,e cũng vậy

\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1)   \(⋮\)2

\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2

mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2

\(\Rightarrow\)a+b+c+d+e \(⋮\)2

mà a,b,c,d,e nguyên dương

\(\Rightarrow\)a+b+c+d+e>2

\(\Rightarrow\)a+b+c+d+e là hợp số

Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)

còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó

nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$

$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$

$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$

Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực

Do đó để tổng của chúng bằng $0$ thì:

$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$

$\Leftrightarrow 2b=2c=2d=2e=a$

$\Rightarrow b=c=d=e$

11 tháng 9 2021

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)

CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)

\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

22 tháng 2 2018

Xét a^2-a = a.(a-1) chia hết cho 2

Tương tự : b^2-b;c^2-c;d^2-d;e^2-e đều chia hết cho 2

=> (a^2+b^2+c^2+d^2+e^2)-(a+b+c+d) chia hết cho 2

Mà a^2+b^2+c^2+d^2+e^2 chia hết cho 2 => a+b+c+d chia hết cho 2

Lại có : a+b+c+d+e > 2 => a+b+c+d+e là hợp sô

Tk mk nha

22 tháng 2 2018

Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)

 = a(a -1) + b( b -1) + c( c – 1) + d( d – 1)

Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2.

Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn 

Lại có a2 + c2 = b2 + d2

=> a2 + b2 + c2 + d2 = 2( b2 + d2 ) là số chẵn.

Do đó a + b + c + d là số chẵn

Mà a + b + c + d > 2 (Do a, b, c, d thuộc N*) a + b + c + d là hợp số. 

7 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=20\end{matrix}\right.\)

16 tháng 7 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)

\(d^2=ce\Rightarrow\frac{c}{d}=\frac{d}{e}\) (3)

\(e^2=dg\Rightarrow\frac{d}{e}=\frac{e}{g}\) (4)

Từ (1),(2),(3),(4) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)

Ta có: \(\frac{a}{b}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (5)

\(\frac{b}{c}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (6)

\(\frac{c}{d}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (7)

\(\frac{d}{e}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (8)

\(\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\) (9)

Nhân (5),(6),(7),(8),(9) vế với vế:

\(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\cdot\frac{d}{e}\cdot\frac{e}{g}=\frac{a}{g}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^5\) (đpcm)

P/s: Mk nghĩ đề là c/m: a/g = (a+b+c+d+e/b+c+d+e+g)^5

16 tháng 7 2017

đề đúng k vậy