K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.

Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$. 

$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)

Do đó $p$ chia $3$ dư $1$

Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)

b.

$\overline{abcd}=1000a+100b+10c+d$

$=1000a+96b+8c+(d+2c+4b)$

$=8(125a+12b+c)+(d+2c+4b)$

Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$

$\Rightarrow \overline{abcd}\vdots 8$

Ta có đpcm.

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

11 tháng 11 2021

a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)

hay \(n\in\left\{0;1;4\right\}\)

11 tháng 11 2021

\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)

16 tháng 8 2020

a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2

+) \(p\equiv2\left(mod3\right)\)

\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)

\(\Rightarrow p+4⋮3\)

Mà \(p+4>3\) nên \(p+4\) là hợp số   (loại)

\(\Rightarrow p\equiv1\left(mod3\right)\)

\(\Rightarrow p+8\equiv9\left(mod3\right)\)

\(\Rightarrow p+8⋮3\)

Vì p + 8 > 3 

\(\Rightarrow\)p + 8 là hợp số   (đpcm)

b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!

Ta có: \(\overline{abcd}=1000a+100b+10c+d\)

                       \(=4b+2c+d+1000a+96b+8c\)

Mà \(1000a⋮8\)\(96b⋮8\)và \(8c⋮8\)

\(\Rightarrow4b+2c+d⋮8\)

\(\Rightarrow\overline{abcd}⋮8\)  (đpcm)

16 tháng 8 2020

Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0

Với p = 3k + 2

=> p + 4 = 3k + 6 chia hết cho 3

p + 4 > 3 => p + 4 là hợp số

=> p = 3k + 2   (loại)

=> p = 3k + 1

=> p + 8 = 3k + 9 chia hết cho 3

Mà p + 8 > 3 nên p + 8 là hợp số  (đpcm)

5 tháng 12 2017

2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d

=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d

=> 7(5n+7) chia hết cho d

hay 35n+49 chia hết cho d

(35n+50)-(35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

(35n-35n)+(50-49) chia hết cho d

0+1 chia hết cho d 1

chia hết cho d => d=1

Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)

Ta có a chia 25 dư 5 => a + 20 chia hết cho 25

        a chia 28 dư 8 => a + 20 chia hết cho 28

        a chia 35 dư 15 => a + 20 chia hết cho 35

=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}

Mà 119 < (a + 20) < 1020

Nên a + 20 = 700

=> a = 680

Vậy số tự nhiên cần tìm là 680

Bài 1: Tìm số tự nhiên n, sao cho:a) 2n+5 chia hết cho n+1b) 4n-7 chia hết cho n-1c) 10-2n chia hết cho n-2d) 5n-8 chia hết cho 4-ne) n^2 +3n+6 chia hết cho n+3Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100a) chứng tỏ rằng A chia hết cho 2,3,15b) A là số Nguyên tố hay Hợp số? Vì sao ?c) Tìm chữ số tận cùng của ABài 3: Tìm ƯCLN a) 2n+1 và 3n+1b) 9n+13 và 3n+4c) 2n+1 và 2n+3Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số...
Đọc tiếp

Bài 1: Tìm số tự nhiên n, sao cho:

a) 2n+5 chia hết cho n+1

b) 4n-7 chia hết cho n-1

c) 10-2n chia hết cho n-2

d) 5n-8 chia hết cho 4-n

e) n^2 +3n+6 chia hết cho n+3

Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100

a) chứng tỏ rằng A chia hết cho 2,3,15

b) A là số Nguyên tố hay Hợp số? Vì sao ?

c) Tìm chữ số tận cùng của A

Bài 3: Tìm ƯCLN 

a) 2n+1 và 3n+1

b) 9n+13 và 3n+4

c) 2n+1 và 2n+3

Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:

a) 7n+10 và 5n+7

b) 2n+3 và 4n+7

Bài 5:Tìm số tự nhiên a,b

a) a x b=12

b) (a-1) (b+2)=7

c) a+b+72 và ƯCLN(a,b)+9

d) a x b= 300 và ƯCLN(a,b)=5

e) ƯCLN(a,b)=12 và BCNN(a,b)= 72

Bài 6 : Chứng tỏ rằng:

a) (10^n + 8 ) chia hết cho 9

b) (10^100+5^3) chia hết cho 3 và 9

c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )

d) (10^9 +10^8 +10^7) chia hết cho 555

Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn

ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!

26
20 tháng 11 2014

Bài 1:

a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N

=>n+1 thuộc {1;3}

=>n thuộc{0;2}

b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N

=>n-1 thuộc{-1;1;3}

=>n thuộc {1;2;4}

c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N

=>n-2 thuộc {-2;-1;1;2;7;14}

=>n thuộc {0;1;3;4;9;16}

d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N

=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}

=>n thuộc{0;2;3;5;6;8;11;18;32}

e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N

=>n-3 thuộc{-3;-2;-1;1;2;3;6}

=>n thuộc{0;1;2;4;5;6;9}

Bài 2:

a)A=2+22+23+...+2100 chia hết cho 2

A=2+22+23+24+...+299+2100

A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3

A=2+22+23+24+25+26+27+28+...+297+298+299+2100

A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+2<=>Achia hết cho 15

b)A chia hết cho 2 => A là hợp số

c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100

A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)

A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)

A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)

A=...0+...0+...+...0

A=0

20 tháng 11 2014

Bài 3:

a)gọi UCLN của 2n+1 và 3n+1 là d

2n+1 chia hết cho d => 6n+3 chia hết cho d 

3n+1 chia hết cho d =>6n+2 chia hết cho d 

=>6n+3-(6n+2) chia hết cho d 

1 chia hết cho d 

=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d  

b)Gọi UCLN cua 9n+13và 3n+4 là m

9n+13 chia hết cho m

3n+4 chia hết cho m=>9n+12 chia hết cho m

=>9n+13-(9n+12) chia hết cho m

1 chia hết cho m 

=> m=1

=> UCLN cua 9n+13 va 3n+4 là1

c) gọi UCLN cua 2n+1 và 2n+3 là n

2n+3 chia hết cho n

2n+1 chia hết cho n

2n+3-(2n+1) chia hết cho n

2chia hết cho n

n thuộc {1,2}

 => UCLN của 2n+1 và 2n+3 là 1 hoặc 2