1/Cho hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\) tìm các giá trị nguyên âm của m để hệ phương trình trên có nghiệm (x;y) nguyên
2/ Tìm giá trị nguyên nhỏ nhất của m để phương trình \(x^3-mx=0\) có 3 nghiệm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
mx+y=m
<=>mx-m=-y
<=>m(x-1)=-y(1)
x+my=1
<=>x-1=-my
<=>m(x-1)=-m^2y(2)
Thay (1) vào (2) ta có:
-y=-m^2y
<=> y=m^2y
<=>m^2=1
=>m thuộc{1;-1}
Vậy m thuộc{-1;1}
\(\left\{{}\begin{matrix}x+my=2m\\mx+y=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=2m^2\\mx+y=1-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)y=2m^2+m-1\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+m-1}{m^2-1}\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{\left(2m-1\right)\left(m+1\right)}{\left(m+1\right)\left(m-1\right)}\\x+my=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=2m-m\cdot\dfrac{2m-1}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m\left(m-1\right)}{m-1}-\dfrac{2m^2-m}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{2m^2-2m-2m^2+m}{m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m-1}\\x=\dfrac{-m}{m-1}\end{matrix}\right.\)
Để hpt có nghiệm nguyên thì: \(x,y\) nguyên
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m-1}\in Z\left(1\right)\\\dfrac{-m}{m-1}\in Z1\left(2\right)\end{matrix}\right.\)
Ta có: \(\left(1\right)=\dfrac{2m-2+1}{m-1}=2+\dfrac{1}{m-1}\)
\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (*)
\(\left(2\right)=\dfrac{-m+1-1}{m-1}=\dfrac{-\left(m-1\right)-1}{m-1}=-1-\dfrac{1}{m-1}\)
\(\Rightarrow m-1\in\left\{1;-1\right\}\Rightarrow m\in\left\{2;0\right\}\) (**)
Từ (*) và (**) ⇒ \(m\in\left\{0;2\right\}\)