cho tam giác ABC cân tại A , trên AB lấy D . Trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I . Trên tia đối của tia BC lấy F sao cho BF=CI.Cmr
a)tam giác BFD = tam giác CIE
b)tam giác DFI cân
c)I là trung điểm DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc ABC + góc ABF = 180 (kb)
góc ACB + góc BCE = 190 (kb)
=> góc ABF = góc BCE
xét tam giác FBD và tam giác ICE có : BF = CI (gt)
BD = CE (gt)
=> tam giác FBD = tam giác ICE (c-g-c)
b, tam giác FBD = tam giác ICE (câu a)
=> góc DFB = góc CIE (đn)
góc CIE = góc DIF (đối đỉnh)
=> góc DFI = góc DIF
=> tam giác FDI cân tại D (dh)
c, kẻ DO // AC có ODI slt với ICE
=> góc ODI = góc ICE (đl) (1)
tam giác FDI cân tại D (Câu b) => DF = DI
mà có FD = IE do tam giác FBD = tam giác ICE (câu a)
=> DI = IE (2)
xét tam giác DIO và tam giác EIC có : góc OID = góc CIE (đối đỉnh) và (1)(2)
=> tam giác DIO = tam giác EIC (g-c-g)
=> DI = IE (đn) mà I nằm giữa D và E
=> I Là trung điểm của DE (đn)
a) Ta có:
DBF + DBI = 180o
ICE + ICA = 180o
Mà DBI = ICA \(\Rightarrow\)DBF = ICE
Xét \(\Delta\)BFD và \(\Delta\)CIE có:
DB = CE (gt)
DBF =ICE (cmt)
BF = CI (gt)
\(\Rightarrow\Delta\) BFD = \(\Delta\)CIE (c.g.c)
b) Vì \(\Delta\)BFD = \(\Delta\)CIE
\(\Rightarrow\)DFB = CIE (2 góc tương ứng)
Mà CIE = DIF (đối đỉnh)
\(\Rightarrow\)DFB = DIF
\(\Rightarrow\)\(\Delta\) DIF cân
c) Ta có: \(\Delta\)DFI cân \(\Rightarrow\)DF = DI
Mà DF = IE \(\Rightarrow\)ID = IE
Lại có 3 điểm
b) Vì 2 tam gics trên = nhau
\(\Rightarrow\)góc DFB=góc CEI; góc DBF= góc ICE (1)
góc BID= góc CIE ( đồng vị )
Ta có: góc F = 180-\(\widehat{FDB}\)-\(\widehat{DBF}\)
\(\widehat{DIB}\) =180-\(\widehat{CEI}\)-\(\widehat{ICE}\)(2)
Từ 1 và 2 \(\Rightarrow\)\(\widehat{F}\)=\(\widehat{DIB}\)
\(\Rightarrow\)tam giác DFI cân tại D
a) Vì tam giác ABC cân tại A
\(\Rightarrow\)gócB=gócC
Xét tam giác BFD và tam giác CIE
BD=CE
BF=CI
góc DBF=góc ECI
\(\Rightarrow\)2 tam giác đó = nhau