Tìm số nguyên x lớn nhất biết
a) \(x< \frac{0}{18}\)
b) \(x< \frac{-14}{5}\)
Làm ơn giúp mk nha. Tầm 9h40' mk sẽ quay lại xem nhé. Bạn nào làm đầy đủ và chi tiết thì mk tick cho nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(=>\frac{y-x}{xy}=\frac{1}{xy}\)
\(=>xy^2-x^2y=xy\)
\(=>xy^2-x^2y-xy=0\)
\(=>x.\left(y^2-xy-y\right)=0\)
\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)
Ta thấy \(y^2-xy-y=0\)
\(=>y.\left(y-x-y\right)=0\)
\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)
Từ 1 và 2 => x = y = 0
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)
\(\Rightarrow y-x=1\)
Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)
a)|7x-5|=|2x-3|
=>7x-5=2x-3 hoặc 7x-5=3-2x
=>5x=2 hoặc 9x=8
=>x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
Vậy x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
b)|4x-5|=x-7
\(VT\ge0\Rightarrow VP\ge0\Rightarrow x-7\ge0\Rightarrow x\ge7\)
=>4x-5=x-7 hoặc 4x-5=-(x-7)
=>3x=-2 hoặc 5x=12
=>x=\(-\frac{2}{3}\)(loại do \(x\ge7\)) hoặc x=\(\frac{12}{5}\)(loại do \(x\ge7\))
Vậy pt vô nghiệm
c)Ta thấy: \(\hept{\begin{cases}\left(x+8\right)^4\ge0\\\left|y-7\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x+8\right)^4+\left|y-7\right|\ge0\)
Dấu = khi \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left|y-7\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+8=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Bài giải
a) (x - 13).(y + 2) = 13 (x; y \(\in Z\))
Ta có 13 = 1. 13 = 13.1
Có hai trường hợp sẽ xảy ra:
x - 13 | 1 | 13 |
y + 2 | 13 | 1 |
Nếu x - 13 = 1 và y + 2 = 13 thì ta có:
x - 13 = 1 | y + 2 = 13 |
x = 1 + 13 | y = 13 - 2 |
x = 14 | y = 11 |
Nếu x - 13 = 13 và y + 2 = 1 thì ta có:
x - 13 = 13 | y + 2 = 1 |
x = 13 + 13 | y = 1 - 2 |
x = 26 | y = -1 |
Vậy \(x\in\left\{14;26\right\}\)và \(y\in\left\{11;-1\right\}\)
b) (x - 2).(y + 1) = 7 ( \(x;y\in Z\))
Ta có 7 = 1.7 = 7.1
Có hai trường hợp sẽ xảy ra:
x - 2 | 1 | 7 |
y + 1 | 7 | 1 |
Nếu x - 2 = 1 và y + 1 = 7 thì ta có:
x - 2 = 1 | y + 1 = 7 |
x = 1 + 2 | y = 7 - 1 |
x = 3 | y = 6 |
Nếu x - 2 = 7 và y + 1 = 1 thì ta có:
x - 2 = 7 | y + 1 = 1 |
x = 7 + 2 | y = 1 - 1 |
x = 9 | y = 0 |
Vậy \(x\in\left\{9;3\right\}\)và \(y\in\left\{6;0\right\}\)
Nhắc lại kiến thức \(!a!=a,,,,\forall a\ge0\)
a) !2x-6!=2x-6 với mọi 2x-6>=0=> x>=3
b) 3-x=!x-3!=!3-x! với mọi 3-x>=0=> x<=3
c)\(C=x^2-2x+3=x^2-x-x+1+2=x\left(x-1\right)-\left(x-1\right)+2=\left(x-1\right)^2+2\)
để C chia hết cho (x-1) => 2 phải chia hết cho (x-1)
x-1=U(2)={-2,-1,1,2}
x={-1,0,2,3}
a) \(0,18=0\Rightarrow x=-1\)
b)\(-\frac{14}{5}=-2,5\Rightarrow x=-3\)
Ko biết