Cho đường tròn Ở đường kính AB. Gọi H là điểm nằm giữa O,B. Kẻ CD vuông góc với AB tại H .Trên cung nhỏ AC lấy điểm E,kẻ CK vuông góc AE tại K . Đường thẳng ĐỂ cắt CK tại F.CHỨNG MINH
a,AHCK là tg nội tiếp
b,AH.AB=AD.AD
C, tam giác ACF cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB là đường kính và D thuộc đường tròn
\(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\) hay tam giác ADB vuông tại D
Xét tam với vuông ADB với đường cao DH, áp dụng hệ thức lượng ta có:
\(AD^2=AH.AB\)
a, Học sinh tự chứng minh
b, DADB vuông tại D, có đường cao DH Þ A D 2 = AH.AB
c, E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ; E A C ^ = K H C ^ (Tứ giác AKCH nội tiếp)
=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm
a: Xét tứ giác AHCK có \(\widehat{AHC}+\widehat{AKC}=90^0+90^0=180^0\)
nên AHCK là tứ giác nội tiếp
b: ta có: AHCK là tứ giác nội tiếp
=>\(\widehat{CHK}=\widehat{CAK}=\widehat{CAE}\left(1\right)\)
Xét (O) có
\(\widehat{CAE}\) là góc nội tiếp chắn cung CE
\(\widehat{CDE}\) là góc nội tiếp chắn cung CE
Do đó: \(\widehat{CAE}=\widehat{CDE}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{CHK}=\widehat{CDE}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//DE
a) Xét (O): E \(\in\) (O) (gt).
\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).
Xét tứ giác BEFI:
\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.
b) Xét (O): \(CD\perp AB\) tại I (gt).
AB là đường kính; CD là dây (gt).
\(\Rightarrow\) I là trung điểm của CD.
Xét tam giác ACD:
AI là đường trung tuyến (I là trung điểm của CD).
AI là đường cao \(\left(AI\perp CD\right).\)
\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).
Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)
Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).
Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)
\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)
Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).
\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)
Xét tam giác ACF và tam giác AEC:
\(\widehat{A}chung.\)
\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).
\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)