K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

undefined

a: ta có: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

hay HN=HP

b: NH=NP/2=8/2=4(cm)

=>MH=3(cm)

c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có

MH chung

\(\widehat{DMH}=\widehat{EMH}\)

Do đó: ΔMDH=ΔMEH

Suy ra: HD=HE

hay ΔHED cân tại H

a: IN/IP=MN/MP=3/5

c: NP=căn 10^2-6^2=8cm

NI là phân giác

=>NI/MN=IP/MP

=>NI/3=NP/5=8/8=1

=>NI=3cm

S MNI=1/2*3*6=9cm2

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

11 tháng 3 2020

M N P K I

Ta có:

\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)

Vì MI là tia phân giác \(\widehat{KMP}\)

=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)

=> Tam giác NMI cân tại N

=> NM = NI ( đpcm )