chờ a, b, c là các số thực dương. tìm giá trị nhỏ nhất củ biểu thức P=\(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a,b,c dương => a+b khác 0
b+c khác 0
a+c khác 0
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(E=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
vậy E = \(\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự ta có: \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b;\) \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng 3 BĐT trên theo vế thì được:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)\(\Rightarrow E\ge\frac{3}{2}\).
Vậy \(Min\) \(E=\frac{3}{2}\). Đẳng thức xảy ra <=> a=b=c.
\(P=\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c}{4a}\)
\(P=\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)}+\frac{c}{4a}\)
Ta đặt \(\frac{b}{a}=x;\frac{c}{b}=y\Rightarrow\frac{c}{a}=xy\)
\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\)
Lại có \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)
Thật vậy, bđt trên tương đương với:
\(\left(xy+1\right)\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\ge\left(1+x\right)^2\left(1+y\right)^2\)
\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2x+2y+2\right)\ge\left(x^2+2x+1\right)\left(y^2+2y+1\right)\)
\(\Leftrightarrow x^2y+y^2x-x^2y^2-2xy+1\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)luôn đúng
Suy ra: \(P\ge\frac{1}{xy+1}+\frac{xy}{4}=\frac{1}{xy+1}+\frac{xy+1}{4}-\frac{1}{4}\)
\(P\ge2\sqrt{\frac{1}{xy+1}\frac{xy+1}{4}}-\frac{1}{4}\left(AM-GM\right)\)
\(=1-\frac{1}{4}=\frac{3}{4}\)
Đẳng thức xảy ra khi a=b=c=1
Ta có :
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{x+y}{xy}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT trên ta có :
\(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)
\(\Rightarrow A=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(c+a\right)+\left(b+c\right)}\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(+\frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{b+c}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{b+c}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi a=b=c
Ta có: \(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)
\(=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c
Vậy max A = 3/4 đạt tại a= b = c .
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Đầu tiền dùng AM-GM cm tổng 3 phân thức đầu >= 6
tổng 3 phân thức còn lại >= 3/2(bđt nesbit) .vậy là xong