K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Đặt a/b=c/d=k

=>a=bk; c=dk

(a+2c)(b+2023d)

=(bk+2dk)(b+2023d)

=k(b+2d)(b+2023d)

=(bk+2023kd)(b+2d)

=(a+2023c)(b+2d)

Đặt a/b=c/d=k

=>a=bk; c=dk

(a+2c)(b+2023d)

=(bk+2dk)(b+2023d)

=k(b+2d)(b+2023d)

=(bk+2023kd)(b+2d)

=(a+2023c)(b+2d)

11 tháng 3 2018

Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:

\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\)           (1)

CMTT ta được

\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\)                             (2)

\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\)                             (3)

Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\)                 (*)

Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:

\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)

Thay vào pt (*) ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

k tớ nha !!!

17 tháng 10 2020

Cách 1: Sử dụng t/c dãy tỉ số bằng nhau ta được

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a-c}{b-d}=\frac{a+2c}{b+2d}\)

Cách 2: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\inℝ\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) thay vào ta được:

\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)

\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

=> đpcm

17 tháng 10 2020

cách 1

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

cách 2:

đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k;c=d.k\)

\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)

\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

4 tháng 8 2019

1) a( b+c) - b(a-c) = ( a+b) c

VT = a( b+c) - b(a-c) 

= ab + ac - ab + bc

= ac + bc

= c(a + b) (=VP)

2)a (b - c)- a (b+d)= - a (c+d)

VT= a (b - c)- a (b+d)

= ab - ac - ab - ad

= -ac - ad

= -a(c + d) (=VP)

7 tháng 1 2019

(a - b - c + d) - (-a - b + c + d)

= a - b - c + d + a + b - c - d

= (a + a) + (b - b) - (c + c) + (d - d)

= 2a + 0 - 2c + 0

= 2a - 2c

= 2(a - c)

7 tháng 1 2019

(a - b - c + d) - (-a - b + c + d) 

= a - b - c + d + a + b - c - d

= 2a - 2c 

= 2.(a - c) (đpcm)

Chúc em học tốt!!!