Tìm x biết:
\(\frac{2}{40}+\frac{2}{88}+\frac{2}{154}+...+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.....
<=>\(\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+...+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
<=>\(\frac{2}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{202}{1540}\)
<=>\(\frac{2}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
<=>\(\frac{2}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{202}{1540}:\frac{2}{3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
<=> x+3=308
<=> x=305
a) Đặt A=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{98\cdot99\cdot100}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+....+\frac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+.....+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)
2A=\(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}=\frac{4949}{9900}\) =>A=\(\frac{4949}{9900}\div2=\frac{4949}{19800}\)
Đặt B=\(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{27\cdot28\cdot29\cdot30}\)
=>3B=\(\frac{3}{1\cdot2\cdot3\cdot4}+\frac{3}{2\cdot3\cdot4\cdot5}+....+\frac{3}{27\cdot28\cdot29\cdot30}\)
3B=\(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+.....+\frac{1}{27\cdot28\cdot29}-\frac{1}{28\cdot29\cdot30}\)
3B=\(\frac{1}{1\cdot2\cdot3}-\frac{1}{28\cdot29\cdot30}=\frac{1353}{8120}\)
=>B=\(\frac{1353}{8120}\div3=\frac{451}{8120}\)
Ta có : A-3x=B=>3x=A-B=\(\frac{4949}{19800}\)-\(\frac{451}{8120}\)\(\approx\frac{1}{5}\)=>x=\(\frac{1}{5}\div3\)=\(\frac{1}{15}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(\Rightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)
\(\Rightarrow3x=\frac{4949}{19800}-\frac{451}{8120}\)
\(\Rightarrow x=\left(\frac{4949}{19800}-\frac{451}{8120}\right):3\)
\(\dfrac{2}{40}+\dfrac{2}{88}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{202}{1540}\)
\(\Leftrightarrow2\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\right)=\dfrac{202}{1540}\)
\(\Leftrightarrow\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)
\(\frac{2}{40}+\frac{2}{88}+\frac{2}{154}+..+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+...+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{202}{1540}:\frac{2}{3}=\frac{303}{1540}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
Vạy x = 305