K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

\(A=\frac{2}{3^2}+\frac{2}{5^2}+.......+\frac{2}{2007^2}\)

\(A=2.\left(\frac{1}{3.3}+\frac{1}{5.5}+......+\frac{1}{2007.2007}\right)\)

\(A< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2006.2007}\right)\)

\(A< 2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2006}-\frac{1}{2007}\right)\)

\(A< 2.\left(\frac{1}{2}-\frac{1}{2007}\right)\)

\(A< 2.\frac{2005}{4014}\)

\(A< \frac{2005}{2007}\)

24 tháng 6 2017

Ta thấy

2/(3x3) < 2/(2x4)  = 1/2 – 1/4

2/(5x5) < 2/(4x6) = 1/4 – 1/6

2/(7x7) < 2/(6x8) = 1/6 – 1/8

………

2/(2007x2007) < 2/(2006x2008) = 1/2006 – 1/12008

Nên:

A = 2/3^2 +2/5^2+2/7^2 +.....+2/2007^2 < 2/(2x4) + 2/(4x6) + …. + 2/(2006x2008) =

1/2 – 1/4 + 1/4 – 1/6 + 1/6 – 1/8 + … + 1/2006 – 1/2008 =          

1/2 – 1/2008 = 1003/2008

Vậy: .....

2 tháng 3 2020

\(A< \frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2007.2009}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2007}-\frac{1}{2009}=\frac{1}{3}-\frac{1}{2009}=\frac{2006}{6027}< \frac{2006}{4016}=\frac{1003}{2008}\)Vây:.......

14 tháng 2 2016

bai toan nay kho

24 tháng 5 2016

Gọi tổng trên là A, ta có:

a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)

                                                     \(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

                                                        \(< \frac{1}{1}-\frac{1}{2008}\)

                                                           \(< 1-\frac{1}{2008}\)

Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)

câu b đề sao đấy bạn