K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

kết quả là 2 giờ 45 phút

6 tháng 2 2018

Ta có: \(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow x\left(x-6\right)+8=y\left(x-5\right)\)

\(\Leftrightarrow y=\frac{x\left(x-6\right)+8}{x-5}\varepsilon Z\Rightarrow x\left(x-6\right)+8⋮x-5\Leftrightarrow x^2-6x+8⋮x-5\)

\(\Leftrightarrow x^2-25-6\left(x-5\right)+3⋮x-5\Leftrightarrow\left(x-5\right)\left(x+5\right)-6\left(x-5\right)+3⋮x-5\Rightarrow\left(x-5\right)\varepsilonƯ\left(3\right)\)

Từ đó tính được x, y mình ngại tính bạn tự tính nhé !!

17 tháng 9 2018

a) Pt\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\). Đến đây là pt trình tích với x,y nguyên, xét các TH là ra

b)\(\left(x-y\right)\left(x^2+xy+y^2\right)=91\). Đến đây cũng là pt tích nhưng chú ý: \(x^2+xy+y^2\ge0\) rồi giải ra

c) Pt\(\Leftrightarrow x^2-x\left(y+6\right)+5y+8=0\) là pt bậc 2 ẩn x có:

\(\Delta=\left(y+6\right)^2-4\left(5y+8\right)=y^2-8y+4.\)Để pt có nghiệm nguyên thì:

\(\Delta\)là số chính phương. Thật vậy, đặt \(\Delta=m^2\left(m\in Z\right)\Leftrightarrow y^2-8y+4=m^2\Leftrightarrow\left(y-4\right)^2-m^2=12\Leftrightarrow\left(y-m-4\right)\left(y+m-4\right)=12\)

Đến đây giải pt tích, chú ý: y-m-4 và y+m-4 cùng tính chẵn lẻ

21 tháng 1 2016

a, x + xy + y = 9

=>xy + x+y+1=10

=>x.(y+1)+(y+1)=10

=>(x+1).(y+1)= 10.1 = 1.10 = 2.5 = 5.2 = (-10).(-1) = (-1).(-10) = (-2).(-5) = (-5).(-2)

ta có bảng các trường hợp sau

x+111025-10-1-2-5
y+110152-1-10-5-2
x0914-11-2-3-6
y9041-2-11-6-3

vậy

bn tich cho mk nha

 

20 tháng 1 2016

xy-2x-3y+6=5+6

x(y-2)-3(y-2)=5+6

(x-3)(y-2)=11

(x-3)(y-2)=1.11;11.1

nếu (x-3)(y-2)=1.11=> x=4 và y=13

nếu (x-3)(y-2)=11.1=>x=14 và y=3

câu b tương tự

xy-2x+5y-10=2-10

x(y-2)+5(y-2)=-8

.....

 

 nhớ tick nha

12 tháng 8 2016

Nguyễn Thùy Linh sai vì 3y+6=3(y+2) chứ ko phải 3y+6=3(y-2)

10 tháng 3 2015

vì y2 luôn lớn hơn hoặc bằng 0 nên 5.y2 cũng luôn lớn hơn hoặc bằng 0 

=> 6x2 < 74 => x2 < 74/6 <13

vì x nguyên nên x2 có thể nhận các giá trị 0; 1; 4; 9

x2 = 0 => 5y2 = 74 => y2 = 74/5 loại vì y nguyên

x2 = 1 => 5y2 = 68 => y2 = 68/5 loại vì y nguyên

x2 = 4 => 5y2 = 50 => y2 = 10 => loại

x2 = 9 => 5y2 = 20 => y2 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3

vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2);

12 tháng 3 2018

vì y2
 luôn lớn hơn hoặc bằng 0 nên 5.y
2
 cũng luôn lớn hơn hoặc bằng 0 
=> 6x2
 < 74 => x2
 < 74/6 <13
vì x nguyên nên x2
 có thể nhận các giá trị 0; 1; 4; 9
x
2
 = 0 => 5y2
 = 74 => y2
 = 74/5 loại vì y nguyên
x
2
 = 1 => 5y2
 = 68 => y2
 = 68/5 loại vì y nguyên
x
2
 = 4 => 5y2
 = 50 => y2
 = 10 => loại
x
2
 = 9 => 5y2
 = 20 => y2
 = 4 => y = 2 hoặc -2 khi đps x = 3 hoặc -3
vậy có tất cả các cặp (x;y) là (3;2); (-3;2); (3;-2); (-3;-2)

:3

8 tháng 4 2016

a,x=5;y=9

1 tháng 12 2018

\(x^2-xy=6x-5y-8\)

\(\Rightarrow x^2-xy-6x+5y+8=0\)

\(\Rightarrow\left(x^2-xy-x\right)-\left(5x-5y-5\right)+3=0\)

\(\Rightarrow x\left(x-y-1\right)-5\left(x-y-1\right)=-3\)

\(\Rightarrow\left(x-y-5\right)\left(x-1\right)=-3\)

Từ đó bạn tìm ước thì ra kết quả.Chúc bạn học tốt.

1 tháng 12 2018

đặt \(x-y=k\)

\(x^2-xy=6x-5y-8\Rightarrow x\left(x-y\right)=x+\left(5x-5y\right)-8\Rightarrow xk=x+5\left(x-y\right)-8\)

\(\Rightarrow xk=x+5k-8\Rightarrow xk=x+5k-5-3\Rightarrow xk-x-5k+5=-3\)

\(\Rightarrow x\left(k-1\right)-5\left(k-1\right)=3\Rightarrow\left(x-5\right)\left(k-1\right)=3\Rightarrow x-5;k-1\inƯ\left(-3\right)=+-1;+-3\)

nếu \(x-5=1\Rightarrow x=6\)thì \(k-1=-3\Rightarrow k=-2\Rightarrow y=x-k=6-\left(-2\right)=8\)

nếu \(x-5=3\Rightarrow x=8\)thì \(k-1=-1\Rightarrow k=0\Rightarrow y=x-k=8-0=8\)

nếu \(x-5=-1\Rightarrow x=4\)thì \(k-1=3\Rightarrow k=4\Rightarrow y=x-k=4-4==0\)

nếu \(x-5=-3\Rightarrow x=2\)thì \(k-1=1\Rightarrow k=2\Rightarrow y=x-k=2-2=0\)

vậy (x;y)=(6;8) (8;8) (4;0) (2;0)

2 tháng 9 2023

Để tìm cặp số nguyên (x, y) thỏa mãn phương trình x^2 + xy = 6x - 5y - 8, chúng ta có thể sử dụng phương pháp giải đồng dư.

Đầu tiên, ta sẽ chuyển phương trình về dạng tương đương: x^2 + xy - 6x + 5y + 8 = 0.

Tiếp theo, ta sẽ tìm các giá trị của x sao cho đa thức trên là một đa thức bậc hai trong y. Để làm điều này, ta sẽ sử dụng công thức giải đa thức bậc hai:

y = (-b ± √(b^2 - 4ac))/(2a)

Ở đây, a = 1, b = x - 6 và c = x^2 - 5x - 8. Thay các giá trị này vào công thức, ta có:

y = (-(x - 6) ± √((x - 6)^2 - 4(x^2 - 5x - 8)))/(2(1))

y = (-x + 6 ± √(x^2 - 12x + 36 - 4x^2 + 20x + 32))/(2)

y = (-x + 6 ± √(-3x^2 + 8x + 68))/(2)

Bây giờ, ta sẽ kiểm tra các giá trị của x từ -100 đến 100 (hoặc bất kỳ phạm vi nào khác mà bạn muốn) và tìm các giá trị tương ứng của y để xem có cặp số nguyên (x, y) nào thỏa mãn phương trình ban đầu không.

Chú ý rằng trong phương trình ban đầu, ta chỉ quan tâm đến các giá trị nguyên của x và y. Do đó, chúng ta có thể sử dụng một vòng lặp để kiểm tra các giá trị này.

Dưới đây là một ví dụ về mã Python để tìm các cặp số nguyên (x, y) thỏa mãn phương trình:

 for x in range(-100, 101): discriminant = -3*x**2 + 8*x + 68 if discriminant >= 0 and discriminant % 4 == 0: y1 = (-x + 6 + discriminant**0.5) / 2 y2 = (-x + 6 - discriminant**0.5) / 2 if y1.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y1)})") if y2.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y2)})")

Kết quả sẽ hiển thị các cặp số nguyên (x, y) thỏa mãn phương trình ban đầu.