Tìm x,y \(\in\) Z
a. 2x-3y+xy =11
b. 3x+4y =21
c. 5x+3y =10
Các bạn trình bày ra giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
a) =(x-y)*(x+y)-(5*(x+y))
=(x+y)*(x-y-5)
Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung
bai nao khong hieu thi pan nhan tin vào nick minh minh se giai đùm ban
a) (x2 - y2) - 5(x + y)
= (x - y)(x + y) - 5 (x + y)
= (x + y) (x - y -5)
b) 5x3 - 5x2y - 10x2 + 10 xy
= 5[(x3 - x2y) - (2x2 - 2 xy)]
=5[x2(x - y) - 2x(x - y)]
=5x(x-y)(x - 2)
c) 2x2 - 5x = x(2x - 5)
d) x3 - 3x2 +1 - 3x
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 - x + 1) - 3x(x + 1)
= (x + 1) [x2 - x + 1 - 3x]
= (x + 1)[x2 - 4x + 1]
= (x + 1)[x2 - 2.x.2 + 22 - 22 + 1]
= (x + 1)[(x - 2)2 - 3]
= \(\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)
e) 3x2 - 6xy + 3y2 - 12z2
= 3[ x2 - 2xy + y2 - 4z2]
= 3[ (x - y)2 - (2z)2]
= 3(x - y + 2z)(x - y - 2z)
f) 3x2 - 7x - 10
= 3x2 - 7x - 7 - 3
= (3x2 -3) - (7x + 7)
= 3(x2 - 1) - 7(x + 1)
= 3 (x + 1)(x - 1) - 7(x + 1)
= (x + 1)[3(x - 1) - 7]
= (x +1)(3x - 8)
g) x4 + 1 - 2x2 = (x2)2 - 2.x2 + 1 = (x2 - 1)2
= (x + 1)2(x - 1)2
h) 3x2 - 3y2 - 12x + 12y
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 12(x -y)
= (x - y) [3(x + y) - 12]
= (x - y). 3. (x+y - 4)
j) x2 - 3x + 2 = x2 - x - 2x +2
= x(x - 1) - 2(x -1)
=(x - 1)(x - 2)
a)(x+1)(y-2)=3
x+1;y-2 thuộc Ư(3){1;-1;3;-3}
ta có bảng sau :
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
y-2 | 1 | -1 | 3 | -3 |
y | 3 | 1 | 5 | -1 |
vậy cặp x;y thuộc {(2;3);(0;1);(4;5);(-2;-1)}
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^