K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

a) điều đo vô lí vì VD như:3/5<5/7

=>3/5<8/12<5/7(vô lí)

b)\(-\frac{1}{3}=-\frac{2}{6}\)

\(-\frac{1}{4}=-\frac{2}{8}\)

=> phân số xen giữa-1/3 và -1/4 là -1/7

19 tháng 6 2015

a, Vì b>0, d>0 mà \(\frac{a}{b}

16 tháng 6 2016

a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)

Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)

b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)

Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)

16 tháng 6 2016

a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\) 

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

NM
7 tháng 9 2021

a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)

\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh

b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm

7 tháng 9 2021

Mk cảm ơn

3 tháng 9 2016

bn vào câu hỏi tương tự

có người làm câu này rồi

18 tháng 6 2015

a/b<c/d

=>ad<bc

=>ad+ab<bc+ab

<=>a(b+d)<b(a+c)

=>a/b<a+c/b+d(1)

từ ad<bc

=>ad+cd<bc+cd

=>d(a+c)<c(b+d)

=>a+c/b+d<c/d (2)

từ 1 và 2 =>đpcm

 

6 tháng 7 2016

\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)

\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)

9 tháng 7 2016

gggggggggggggggggggggggg

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

24 tháng 8 2016

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\left(1\right)\)

Cộng 2 vế của (1) với ab

ad+ab<bc+ab

a(b+d)<b(a+c) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(2\right)\)

Cộng 2 vế của (1) với cd: ad+cd<bc+cd

d(a+c)<c(b+d) \(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(3\right)\)

Từ (2) và (3) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Đpcm

b)Theo phần a có:

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy  \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

 

30 tháng 8 2016

a) Giả sử: \(\frac{a}{b}< \frac{a+c}{b+d}\)        (1)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\) 

\(\Rightarrow ab+ad< ba+bc\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}< \frac{c}{d}\) )

Vậy (1) là đúng.    (3)

Giả sử: \(\frac{a+c}{b+d}< \frac{c}{d}\)  (2)

\(\Rightarrow\left(a+c\right).d< \left(b+d\right).c\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) (đúng vì \(\frac{a}{b}=\frac{c}{d}\) )

Vậy (2) đúng.  (4)

Từ (3) và (4) suy ra:

\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

b) \(\frac{-1}{3}< \frac{-2}{7}< \frac{-3}{11},< \frac{-4}{15}< \frac{-1}{4}\)

19 tháng 8 2017

Giả sử : \(\frac{a}{b}=\frac{c}{d}\) thì ad = bc 

Suy ra : ad < bc thì \(\frac{a}{b}< \frac{c}{d}\) (đpcm)

23 tháng 6 2018

a) 

Có \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\) (vì bd > 0)

Vậy \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (với b, d > 0)

b) 

Có ad < bc và bd > 0

\(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

Vậy \(ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (với b, d > 0)