Cho số dương 0<=a<=b<=c<=1 chứng minh rằng
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< =2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu y = 0 => |x| = 0 => x = 0 (Không xảy ra)
Nếu z = 0 => |x| = y3 > 0 => y dương mà z = 0 nên x là số âm
Nếu x = 0 => y3 = y2z => y3 : y2 = z => y = z => y; z cùng dấu (không xảy ra)
Vậy z = 0; x là số âm; y là số dương
a) Nếu a . b là số nguyên dương thì a và b phải là hai số nguyên cùng dấu , mà a là số nguyên âm nên b cũng là số nguyên âm
b) Nếu a . b là số nguyên âm thì a và b phải là hai số nguyên khác dấu , mà a là số nguyên âm nên b phải là số nguyên dương
( âm nhân âm bằng dương . Dương nhân âm hay âm nhân dương bằng âm )
TH1: a là dương; b là số âm; c là 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5-b^4.0=b^5-0=b^5>0\)
\(\Rightarrow a^2=b^5\) (vô lí)
TH2: a là 1 số âm, b là số dương, c là số 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5>0\)
\(\Rightarrow a^2=b^5\) (thỏa mãn)
Vậy trong 3 số a là số âm, b là số dương, c là số 0
1) ta có 1 = -1.(-1-0)
=> a là số nguyên dương vì = 1
=> b là số nguyên âm vì = -1
=> c là số không vì = 0